
On-board Model Predictive Control of a Quadrotor

Helicopter: Design, Implementation, and Experiments

Patrick Bouffard

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-241

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-241.html

December 13, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 DEC 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
On-board Model Predictive Control of a Quadrotor Helicopter: Design,
Implementation, and Experiments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes work in applying model predictive control (MPC) techniques to the control of
quadrotor helicopters, a type of micro aerial vehicle (MAV) platform that has gained great popularity in
recent years both in research and commercial/military settings. MPC is a form of optimal control which is
attractive in part because it allows engineering requirements to be addressed directly in the design of the
controller in terms of costs to be minimized and constraints to be satisfied in an optimization problem.
Furthermore, for many engineering problems of interest, the optimization to be performed is convex,
meaning that a global optimum can be efficiently computed. MPC first found broad early application in
the process industry, where the typically longer time scales were compatible with the time necessary to
solve the optimization problem. More recently with both the exponential increase in available computing
power and the development of more efficient solution techniques, MPC has become an option for control of
systems with faster dynamics, such as quadrotors.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

82

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The author gratefully acknowledges the financial support of a Natural
Sciences and Engineering Research Council of Canada (NSERC)
postgraduate doctoral (PGS-D) scholarship. This work has also been
supported in part by NSF under CPS:ActionWebs (CNS-931843), by ONR
under the HUNT (N0014-08-0696) and SMARTS (N00014-09-1-1051)
MURIs and by grant N00014-12-1-0609, and by AFOSR under the CHASE
MURI (FA9550-10-1-0567).

On-board Model Predictive Control of a
Quadrotor Helicopter

Design, Implementation, and Experiments

by Patrick Bouffard

Department of Electrical Engineering and Computer Sciences

College of Engineering

University of California, Berkeley

On-board Model Predictive Control of a Quadrotor Helicopter:
Design, Implementation, and Experiments
by Patrick Bouffard

Copyright c© 2012 Patrick Bouffard. All rights reserved.

This document was created with the document preparation system LYX.

Abstract
On-board Model Predictive Control of a Quadrotor Helicopter:

Design, Implementation, and Experiments

by Patrick Bouffard

This report describes work in applying model predictive control (MPC) techniques to the control of
quadrotor helicopters, a type of micro aerial vehicle (MAV) platform that has gained great popularity in
recent years both in research and commercial/military settings. MPC is a form of optimal control which
is attractive in part because it allows engineering requirements to be addressed directly in the design
of the controller in terms of costs to be minimized and constraints to be satisfied in an optimization
problem. Furthermore, for many engineering problems of interest, the optimization to be performed
is convex, meaning that a global optimum can be efficiently computed. MPC first found broad early
application in the process industry, where the typically longer time scales were compatible with the
time necessary to solve the optimization problem. More recently with both the exponential increase
in available computing power and the development of more efficient solution techniques, MPC has
become an option for control of systems with faster dynamics, such as quadrotors.

We bring together results from our application of two distinct variants of MPC. The common thread is
that we seek advanced control algorithms that can be applied to an autonomous MAV like the quadrotor,
ideally without requiring any external resources, i.e. we aim to perform all computations required for
real-time closed-loop control on-board the vehicle.

The first variant is known as explicit MPC, where in a sense the heavy numerical work of solving
optimization problems is done a priori and off-line, such that the on-line implementation requires
minimal computation. In this report we describe the design and implementation of three explicit MPC
controllers of increasing complexity, and experiments in which these controllers were executed on a
quadrotor’s on-board computer to control the vehicle in hovering flight. We describe the results of these
experiments, with particular emphasis on the resulting performance, in terms of each controller’s ability
to maintain the quadrotor near a static hover condition.

The second variant is learning-based model predictive control (LBMPC). LBMPC seeks to combine
techniques from statistical learning which can help improve performance, with tools and concepts from
control theory which provide guarantees about safety, robustness, and convergence. Prior to this work,
LBMPC had been implemented in systems quite different from the quadrotor, such as an air-conditioning
testbed. Our LBMPC controller for the quadrotor helps demonstrate the formulation’s versatility, and
some of the particulars of this problem required extensions to LBMPC which we describe. Our main
focus here is on demonstrating properties of LBMPC controllers on the quadrotor testbed, with an
implementation of LBMPC that runs in real-time on the quadrotor’s on-board computer. Robustness to
“mis-learning” is one aspect of LBMPC that we demonstrate in an experiment where we deliberately
mis-tune a learning algorithm. We also demonstrate the improvement in performance possible when
a well-tuned learning algorithm is used, show learning used to update the model in a physically
meaningful way, and demonstrate the use of the LBMPC controller in an integrated robotic task
requiring speed and precision: we design a controller that enables the quadrotor to catch balls.

Finally, another aspect of MPC research that is important in applying MPC to systems with fast dynamics
and limited computation is the development of so-called “fast MPC” methods. These techniques leverage
the sparsity pattern that is characteristic of the MPC optimization in dedicated solvers that scale better
in the MPC horizon than do general-purpose solvers. However, since LBMPC can be considered a
superset of classical MPC, existing fast MPC solvers are not able to solve the optimization problems
that arise in LBMPC. We have implemented an LBMPC solver based on an infeasible start interior point
method and in simulations demonstrate that its runtime scales linearly in the horizon length. We also
show results of experiments where this new solver is run on-board the quadrotor for closed-loop control,
and compare its performance in this setting to that of two existing general-purpose active-set solvers.

i

ii

Acknowledgments
Firstly, I am deeply indebted to my advisor, Professor Claire Tomlin, for accepting me into her research
group and providing generous support, insightful advice and kind encouragement throughout my time
at Berkeley to date. No matter how discouraged I might at times feel when entering her office for a
status meeting, I always leave with renewed energy and determination.

That Professor Ruzena Bajcsy is a remarkable person is well-known to anyone who has crossed her path.
I am most thankful to her for agreeing to be Second Reader for this report and I am looking forward to
our future collaborations together. I am also thankful to Professor Francesco Borrelli for a providing
thorough and proper introduction to MPC in his ME290J class and agreeing to supervise the project on
explicit MPC for the quadrotor. I also thank my partner for that project, Cameron Rose.

I greatly enjoyed collaborating with Dr. Anil Aswani on the LBMPC work. Always patient with me when
I struggled to grasp some of the theoretical concepts, he also provided immensely useful suggestions
on practical implementation of controllers and estimators that will be useful quite beyond the work
described herein. I have greatly enjoyed our conversations about a wide range of topics, which we
often undertook during long hours in the laboratory while waiting for code to recompile, but also over
lunches, dinners, and late-night food runs in the cafes and restaurants along Euclid Avenue. It was also
a pleasure working with George (Xiaojing) Zhang to whom most of the credit for the work on the PD
IIPM LBMPC solver in Chapter 5 is due.

The Hybrid Systems Lab has always been a place where people are ready to offer keen criticism and
advice on any and all topics, academic or otherwise. For this I thank Anil Aswani, Maximilan Balandat,
Young-Hwan Chang, Mo Chen, Vera Dadok, Roel Dobbe, Jeremy Gillula, Qie Hu, Haomiao Huang,
Sleiman Itani, Maryam Kamgarpour, Eugene Li, Neal Master, Tony Mercer, Selina Pan, Pangun Park,
Mac Schwager, Andrew Sy, Ryo Takei, Michael Vitus, Insoon Yang, Melanie Zeilinger, Wei Zhang, and
Zhengyuan Zhou.

Without the open-source software generously released by several individuals around the world, much
of the implementation and experimental part of the work in this report would have been considerably
more difficult. I am therefore thankful to the authors of ROS, the ROS AscTec drivers, as well as those
of Linux and an uncountable number of supporting packages for this wonderful operating system.

I would like to gratefully acknowledge the financial support of a Natural Sciences and Engineering
Research Council of Canada (NSERC) postgraduate doctoral (PGS-D) scholarship. This work has
also been supported in part by NSF under CPS:ActionWebs (CNS-931843), by ONR under the HUNT
(N0014-08-0696) and SMARTS (N00014-09-1-1051) MURIs and by grant N00014-12-1-0609, and by
AFOSR under the CHASE MURI (FA9550-10-1-0567).

Finally, my deepest and most sincere appreciation goes to those who are dearest to me: My parents
Michael and Beth Bouffard have always shown through both words and actions that their love for their
children is unconditional and complete; also my sister Danielle, whose hard work and dedication to
family are more of an inspiration than she knows. I am grateful to my parents-in-law Roy and Misao
Katsuyama, who have never questioned the wisdom of their son-in-law’s somewhat unorthodox career
detour. Most of all, I thank my darling wife Noriko, whose love and strength have never flagged through
the many ups and downs of this journey; and my children, Kiyomi and Keiji, whose smiles upon my
return from a too-long day on campus always lift my spirits.

Patrick Bouffard
Berkeley, California

December, 2012

iii

iv

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Overview . 2
1.2 Organization . 3
1.3 Notation . 3

1.3.1 General conventions . 3
1.3.2 List of symbols . 4

2 Quadrotor Dynamics Model 9
2.1 Overview . 9
2.2 Quadrotor theory of operation . 9
2.3 Quadrotor models for near-hover operation . 10

2.3.1 Preliminaries . 12
2.3.2 Attitude Dynamics . 12
2.3.3 Lateral translational dynamics . 13
2.3.4 Combined attitude and lateral translational dynamics 14
2.3.5 Vertical translational dynamics . 15
2.3.6 Combined lateral and vertical dynamics model 15

2.4 System Identification . 16
2.4.1 Attitude dynamics . 16
2.4.2 Vertical dynamics . 18
2.4.3 Combined lateral and vertical dynamics . 18

3 Explicit MPC Control 21
3.1 Overview . 21
3.2 Problem formulation . 22

3.2.1 Standard QP-MPC . 22
3.2.2 Offset-free QP-MPC using δu formulation . 22

3.3 Experiments . 23
3.3.1 Dual, decoupled standard explicit CFTOC MPC 24
3.3.2 Coupled standard explicit CFTOC MPC . 25
3.3.3 Offset-free MPC . 26

3.4 Discussion . 29

4 Learning-Based MPC Control 31
4.1 Overview . 31
4.2 Theory . 32

4.2.1 Quadrotor Vehicle Model . 32
4.2.2 Overview of learning-based model predictive control theory 32
4.2.3 Extensions of LBMPC for quadrotors . 33

v

4.3 Control System Design . 35
4.3.1 Vehicle State Estimation and Learning . 35
4.3.2 LBMPC parameters . 37

4.4 Implementation . 37
4.5 Experimental Results . 39

4.5.1 Learning the ground effect . 40
4.5.2 Decreased overshoot in step response . 40
4.5.3 Robustness to “incorrect learning” . 41
4.5.4 Precise maneuvering: ball catching . 42

4.6 Conclusions . 44

5 Exploiting Structure for Fast LBMPC Solutions 45
5.1 Introduction . 45
5.2 Experimental and simulation results . 45

5.2.1 Computational scaling in horizon length . 46
5.2.2 Experimental comparison . 47

5.3 Conclusions . 48

6 Conclusions 51
6.1 Summary . 51
6.2 Future Work . 51

A Experimental testbed description 53
A.1 Overview . 53
A.2 Pelican quadrotor . 53

A.2.1 Control System . 53
A.3 Motion capture system . 54
A.4 Safety systems . 55

B Modeling and estimation for a ball in free flight 57
B.1 Modeling . 57
B.2 Estimation and prediction . 58

B.2.1 State estimation . 58
B.2.2 Prediction . 59

References 61

List of Symbols 67

vi

List of Figures

2.1 Quadrotor rotor numbering convention and sense of rotation of rotors. View is from
above, looking down at the quadrotor. Two of the body-fixed axes (b1 and b2) are also
shown. 10

2.2 Relationship between inertial frame FI and quadrotor body frame FB 11
2.3 Axes of rotation: θ0 (yaw) about b3 axis (going into the page); θ1 (pitch) about b2 axis;

and θ2 (roll) about b1 axis. 12
2.4 Free body diagram for quadrotor lateral translational dynamics. Lateral acceleration is

achieved by developing a lateral force Tx by changing the roll or pitch attitude angle θ. 13
2.5 Typical experimental step response from testing data (input in cyan, output in red). Here

the command is a step change of 10 degrees in the pitch axis. (The horizontal axis is
time in seconds) . 18

2.6 Simulated response of closed-loop attitude dynamics model, continuous and discretized
(dT = 0.025 s), for selected parameter values, to a unity step input. Dashed vertical lines
illustrate rise time of 0.4 s to a peak value of 0.6, a DC gain of 0.5, and a settling time
(to within 1% of the steady-state value) of about 0.9 s. 20

3.1 Standard MPC: trajectory of the quadrotor at hover altitude, two views towards perpen-
dicular headings. 26

3.2 δu formulation offset free MPC: Position-holding performance of MPC controller 28
3.3 PID controller in steady hover . 29

4.1 System diagram showing QP-LBMPC for the quadrotor. 36
4.2 Variation of thrust input mapping (B +H)10,3/B10,3 vs. time. 41
4.3 Step response for linear MPC with nominal model and LBMPC with learned model. The

reference command is the dotted blue line. The LBMPC response here is from the 4th
step command after enabling learning. 42

4.4 Safety is maintained even if parameter learning goes awry. 42
4.5 Measurements and EKF estimates of the ball’s position throughout its trajectory, the

estimated final position of the ball, and the trajectory of the quadrotor body frame FB
are shown. 43

4.6 “Ball catching” experiment. The quadrotor, controlled using LBMPC, is about to catch
a ball. Video from the experiments can be viewed on-line: http://hybrid.eecs.
berkeley.edu/~bouffard/research.html. 44

5.1 Plot of average solving time [ms] vs. horizon length N . Trendlines emphasize the strong
linearity of the solving time. 47

5.2 The step response trajectory of the quadrotor helicopter flown using LBMPC solved with
LSSOL (solid blue), the difference between the trajectories of the helicopter when flown
with the LSSOL versus the LBmpcIPM solver (dashed red), and the difference between
the trajectories of the helicopter when flown with the LSSOL versus the qpOASES solver
(dash-dotted green). 48

5.3 Empirical densities of solve times on quadrotor helicopter for different optimization
algorithms are shown. The vertical dashed red line at 25ms indicates the threshold
beyond which greater solve times are too slow to be able to provide real time control. . . 49

vii

A.1 High-level system diagram showing the main components involved in the control of the
quadrotor in our experimental setup. The items within the dashed line are all on-board
the quadrotor as it flies. Our controllers run on the Atom CPU. 54

A.2 Ascending Technologies Pelican quadrotor (photo courtesy Ascending Technologies) . . . 55

B.1 Diagram of the ball in flight. The ball’s trajectory is shown by the dashed line. FI is the
inertial frame; (xb,1, xb,2, xb,3)

T is the position vector of the ball in this frame. The ball’s
instantaneous velocity vector V is shown in green; drag FD (blue arrow) acts opposite V
and the force of gravity mbgx3 acts downwards. The height zc represents the altitude
at which we attempt to catch the ball (based on the quadrotor’s altitude), and x̂c is the
predicted intersection of the ball’s trajectory and the plane defined by zc. 58

viii

List of Tables

3.1 Key parameters for dual, decoupled explicit MPC controller for one axis. 24
3.2 Key parameters for combined 8-state system explicit MPC controller for both lateral axes 25
3.3 Key parameters for combined 8-state system explicit MPC controller for both lateral axes 27

4.1 Dual EKF design parameter values . 38
4.2 LBMPC parameters (common across all experiments) . 39
4.3 LBMPC parameters (ball catching experiment) . 40
4.4 LBMPC parameters (experiments other than ball catching) 41

5.1 Different computers on which we tested the LBmpcIPM solver. 46
5.2 Average time [ms] to solve problem for one timestep. 46

B.1 Parameters for ball state estimation. 59

ix

x

Chapter 1

Introduction

There has been much recent interest in the use of small unmanned aerial vehicles (UAVs) for security,
surveillance/sensor networks (Schwager et al., 2011), and search-and-rescue (Hoffmann, Waslander,
and Tomlin, 2006; Michael et al., 2012) applications, and such vehicles have seen use in areas as diverse
as recent political upheavals (Austen, 2011) and even as high-tech toys1. Due to these applications, and
because of their relatively small size, ability to hover, and mechanical simplicity, quadrotor helicopter
UAVs are a popular choice among researchers in control and robotics (Hoffmann et al., 2004; How
et al., 2008; Michael et al., 2010; Huang et al., 2011a; Lupashin et al., 2011; Meier et al., 2012).

Prior work in our lab has included application of various types of control systems to the quadrotor;
for example, in (Waslander et al., 2005), reinforcement learning and integral sliding mode control
were investigated for outdoor altitude control of the quadrotor, and PID control of attitude and altitude
were examined in (Hoffmann et al., 2007). In (Ding et al., 2011) a reachability-based control synthesis
technique was used to control the lateral motion of a quadrotor. In a prior work in vision-based control
(Brockers, Bouffard, Ma, Matthies, and Tomlin, 2011), a PID-type controller was used on the same type
of quadrotor platform used in the experiments herein. Much work has been focused on higher-level
control and autonomous behaviors (Vitus et al., 2008; Hoffmann and Tomlin, 2008; Huang et al.,
2011b). However, application of one of the major classes of control techniques, model predictive control
(MPC), had not previously been investigated in detail on our platform.

MPC is a technique which poses the control problem as an optimization, where a given cost function
is minimized over decision variables that include the values of the control inputs for the current and
future (for some finite horizon–for this reason MPC is also known as receding horizon control (RHC))
timesteps, subject to constraints on state and inputs. MPC is therefore able to naturally consider safety
considerations and actuator saturation, as long as these can be formulated as state and input constraints.
When the cost function is quadratic in the states and inputs, and the constraints affine, the optimization
is a quadratic program (QP), and the resulting control law turns out to be piecewise affine (PWA) when
parametrized by the initial condition, over a collection of polytopic regions of the state space.

MPC in applications dates to the late 1970’s, where it first found use in the process industry and
was termed Model Predictive Heuristic Control (MPHC) (Richalet et al., 1976, 1978). In this setting,
relatively long time scales (e.g. sampling periods on the order of minutes) meant that the modest and
unreliable digital computing capabilities of the day were not a barrier to successful adoption of these
new methods. In the intervening decades as computing has become faster and more reliable, the types
of systems that MPC can address has broadened, and concurrently new theoretical developments have
also made the application of MPC techniques feasible on a larger range of systems.

There has been some prior work in application of MPC to quadrotors. In (Raffo and Ortega, 2008),
a method for controlling the quadrotor using a combination of MPC and H∞ control was described
and tested in simulations. In (Lopes, Ara, and Ishihara, 2011), an MPC controller for a quadrotor was
developed and compared in simulations to conventional linear PID control and nonlinear backstepping
control. In (Alexis et al., 2011; Alexis, Nikolakopoulos, and Tzes, 2011), a switching (among 3
piecewise-affine (PWA) systems) explicit MPC controller is presented, with experimental results. Finally,
in some recent work (Burri et al., 2012) the authors describe experiments with an MPC controller for a
quadrotor designed for inspections of a thermal power plant boiler.

1Parrot AR.Drone, http://ardrone2.parrot.com/

1

Chapter 1 Introduction

1.1 Overview

In this report, we bring together results from our application of two distinct variants of MPC for control
of the quadrotor. The common thread is that we seek advanced control algorithms that can be applied
to an autonomous MAV like the quadrotor, ideally without requiring any external resources, i.e. we aim
to perform all computations required for real-time closed-loop control on-board the vehicle. The two
variants are known as “explicit MPC” and “learning based MPC”.

Explicit MPC

The controller resulting from solving the (quadratic program) MPC optimization problem is PWA over
polytopic regions of the initial state (Bemporad et al., 2002). This fact is leveraged by a form of MPC
called explicit MPC, in which these PWA control laws and the polytopic regions are pre-computed.
The advantage is that the resulting controller can be implemented on-line very efficiently, as the
determination of the control input at each timestep amounts to a look-up of the appropriate PWA
control law based on which polytopic region contains the current state. This efficiency at run-time
comes at a cost–the computation of the polytopic regions scales poorly as the number of states in the
system and number of steps in the horizon increase, and can both limit the achievable performance
(by limiting the length of horizon that can be handled) and also slow down the task of control design,
as any change to the controller parameters (e.g. weighting matrices in the cost function) requires a
re-computation of the lookup table, which can require a considerable amount of time, even for systems
with relatively small state spaces such as the quadrotor, with a small number of timesteps. We sought to
explore the use of explicit MPC for the quadrotor; because of the quadrotor’s small payload capacity it
carries a relatively modest on-board computer, so a scheme like explicit MPC that is efficient at run-time
is attractive in this context. In this report we describe the design and implementation of three explicit
MPC controllers of increasing complexity, and experiments in which these controllers were executed on
a quadrotor’s on-board computer to control the quadrotor in hovering flight. We describe the results of
these experiments, with particular emphasis on the resulting performance, in terms of each controller’s
ability to maintain the quadrotor near a static hover condition.

Learning-based MPC (LBMPC)

A recently developed control technique with roots in MPC, adaptive, and learning-based control is called
learning based model predictive control (LBMPC) (Aswani et al., 2012a). It seeks to combine attributes
of MPC (most notably, the ability to enforce constraints, which encode safety requirements) with
elements of adaptive or learning schemes which promise to improve performance by improving system
models based on data obtained on-line. The issue with using the adaptive/learning-based techniques is
that, alone, they do not provide any safety guarantees; it is possible in most such techniques to learn
an arbitrarily bad model, and controlling based on such a model could lead to compromising safety.
LBMPC seeks to reconcile this by using learning to update a model that can improve performance
by its incorporation into the cost function, but without compromising safety. The safety property
is achieved my maintaining a nominal model, with bounds on the modeling error, and using this
bounded-uncertainty nominal model in constraint satisfaction. The result is that even if the learning
algorithm fails to improve the model, safety is maintained. This robustness to “mis-learning” is one
aspect of LBMPC that we demonstrate with an implementation of LBMPC that runs in real-time on the
quadrotor’s on-board computer, in an experiment where we deliberately mis-tune a learning algorithm.
We also demonstrate the improvement in performance possible when a well-tuned learning algorithm is
used, show learning used to update the model in a physically meaningful way, and demonstrate the
use of the LBMPC controller in an integrated robotic task requiring speed and precision: we design a
controller that enables the quadrotor to catch balls.

2

1.2 Organization

Exploiting structure for fast LBMPC solutions

The sparsity structure in MPC problems has been noted by previous authors, e.g. (Wang and Boyd,
2010; Rao, Wright, and Rawlings, 1998). In a short coda, we describe experiments and simulations
where a new primal-dual infeasible-start interior-point method (PD IIPM) sparse solver is used for the
control of the quadrotor using LBMPC. The results confirm theoretical results on the linearity of the
solve time in the LBMPC horizon length. We compare the new solver against two other solvers as well.

1.2 Organization

This report is concerned with the design and implementation of different types of MPC controllers for
a quadrotor, and experiments testing the use of these controllers on a real quadrotor in flight, with
the controller running entirely on-board the quadrotor. The material presented here has appeared in
part in a term project report (Bouffard and Rose, 2011) and in two papers (Bouffard, Aswani, and
Tomlin, 2012; Aswani, Bouffard, and Tomlin, 2012). In the following we describe the organization of
the present report.

The following section in this chapter describes notation used in this document. Chapter 2 describes
dynamical models for the quadrotor helicopter that are relevant to the controllers that we design
for it, and also describes how we identified relevant system parameters for these models. Chapter 3
describes our design and implementation of, and experiments with, an explicit MPC controller for the
quadrotor. Chapter 4 describes the LBMPC technique and its application to the quadrotor, and design
and implementation of an LBMPC controller for the quadrotor. We also describe experiments on this
platform which demonstrate some of the important features of LBMPC. Chapter 5 briefly describes the
design and implementation of a new solver using “fast MPC” techniques on the LBMPC problem, and
focuses on simulation and experimental results including comparison between this new solver and some
existing general-purpose solvers. Finally, in Chapter 6 we offer some concluding remarks and directions
for future work. We reserve Appendix A for a detailed description of the experimental testbed including
the quadrotor itself as well as supporting hardware and software. Appendix B describes some details of
the modeling, estimation, and prediction of the trajectories of balls in free flight that are pertinent to
one of the LBMPC experiments.

1.3 Notation

Here, we define the notation used in this report. First we will describe some general conventions used,
and then each symbol used is listed, along with its dimensionality/set membership (if applicable) and a
short description. Acronyms/initialisms are defined where they are first used, but see also page 67 for a
complete list of these.

1.3.1 General conventions

Vectors and matrices: Vectors are not typeset specially, but are identified as such when introduced
(e.g., v ∈ R10). All vectors are column vectors, and the transpose of a vector or matrix is denoted with a
superscript T (e.g., vT). The notation diag {d1, . . . , dn} denotes a diagonal matrix with the bracketed
values along the diagonal; similarly, the notation blkdiag {D1, . . . , DN} denotes a block-diagonal
matrix with the bracketed matrices along the diagonal blocks.

Discrete-time indices and difference equations: Variables that change at each discrete timestep have
the time index either denoted by the subscript (e.g. vk), or in square brackets (e.g. v [k]). However, in

3

Chapter 1 Introduction

equations describing the update of such a variable, a superscript + on the variable indexed by time
indicates the subsequent time index of the variable. For example, v+ = 0.5v + 0.1 is equivalent to
vi+1 = 0.5vi + 0.1.

Where a time-indexed variable is included without a subscript, this refers to the value of the variable at
the “most recent” timestep in a sense that should be clear from the context.

Quadratic form: The notation ‖v‖2M denotes the quadratic form vTMv.

Inertial frame axis subscripts: The indices 1, 2, or 3 are subscripted on vectors to denote the
component in the corresponding axis of the inertial frame.

Time derivative: Symbols with a dot above are the time derivative of that symbol (e.g., ẋ = dx
dt).

Double dots indicate a second time derivative (e.g. ẍ = g/m).

Sets: Sets are denoted by calligraphic capital letters, e.g. U . The Minkowski sum of two sets U ,W
is defined as U ⊕W = {u+ w | u ∈ U , w ∈ W}. The 	 symbol denotes the Pontryagin set difference
operator (Kolmanovsky and Gilbert, 1998), e.g. X 	D = {x | {x} ⊕ D ⊆ X}.

Limiting values: Whenever an underbar or overbar is used it indicates the upper or lower limit resp.
for under/overlined quantity. For vector quantities the limits are taken element-wise. For example, x̄ is
the vector of upper limits of the components of x.

1.3.2 List of symbols

We endeavor here to describe every symbol used in this report. We have tried not to overload notation
too much, but where a symbol is overloaded we warn the reader.

Sets

R The set of all real numbers

R+ The set of all non-negative real numbers

R>0 The set of all positive real numbers

Rn The n-dimensional real linear space

Z The set of all integers

Z+ The set of all non-negative integers

N The set of all positive integers

X ⊆ Rn set of feasible states

Xf ⊆ Rn set of feasible terminal states

U ⊆ Rm set of feasible inputs

Ω ⊆ X × R3 maximal output admissible disturbance invariant set

D ⊂ Rn model uncertainty bounds (per timestep)

4

1.3 Notation

Scalars
(elements of R unless otherwise specified)

δt discrete-time model timestep

θ attitude angle (pitch or roll depending on context)

θ0, θ1, θ2 yaw, pitch, roll angles respectively

g acceleration due to gravity

m (overloaded) mass of quadrotor

m ∈ N (overloaded) number of inputs (dimension of input vector), or, current discrete timestep

n ∈ N number of states (dimension of state vector)

p ∈ N number of outputs (dimension of output vector)

N ∈ N MPC prediction horizon

n0, d0, d1 attitude subsystem transfer function polynomial coefficients

T total thrust

Tx lateral component of total thrust (in some lateral axis)

Tz vertical component of total thrust

xi i-th component of position of quadrotor in FI

ui i-th input

KT thrust coefficient

k ∈ Z timestep index, in discrete-time model

t time, in continuous-time model

δ tuning parameter in dual EKF

ρ density of air

CD coefficient of air friction

Reference frames

FI Inertial reference frame

FB Quadrotor body reference frame

Vectors and matrices

0,0m×n The zero matrix (without subscript, dimensions should be clear from context; subscript
when present denotes the size)

I, In The identity matrix (without subscripts, dimensions should be clear from context; subscript
when present denotes the size)

b1,b2,b3 The coordinate axes of FB

x1,x2,x3 The coordinate axes of FI

Ac ∈ R2×2 attitude subsystem continuous-time model dynamics matrix

Aθ ∈ R2×2 attitude subsystem discrete-time model dynamics matrix

At ∈ R2×2 lateral translational subsystem discrete-time model dynamics matrix

5

Chapter 1 Introduction

Al ∈ R4×4 combined attitude and lateral translation discrete-time model dynamics matrix

A8 ∈ R2×2 combined attitude and lateral translation (both axes) discrete-time model dynamics matrix

Az ∈ R2×2 vertical dynamics subsystem discrete-time model dynamics matrix

A ∈ R10×10 combined (10-state) quadrotor dynamics discrete-time model dynamics matrix

Ab ∈ R2×2 ball model dynamics matrix (one axis)

Bl ∈ R4×1 combined attitude and lateral translation discrete-time model input-to-state map

Bc ∈ R2×1 attitude subsystem continuous-time model input-to-state map

Bθ ∈ R2×1 attitude subsystem discrete-time model input-to-state map

Bt ∈ R2×1 lateral translational subsystem discrete-time model input-to-state map

B8 ∈ R8×2 combined attitude and lateral translation (both axes) discrete-time model input-to-state
map

Bz ∈ R2×1 vertical dynamics subsystem discrete-time model input-to-state map

B ∈ R10×3 combined (10-state) quadrotor dynamics discrete-time model input-to-state map

Cθ ∈ R1×2 attitude subsystem state-to-output map (discrete- or continuous-time model)

Ct ∈ R1×2 lateral translational subsystem discrete-time model state-to-output map

C ∈ R5×10 combined (10-state) quadrotor dynamics discrete-time model state-to-output map

Cb ∈ R3×6 ball model state-to-output map

D ∈ Rp×m input-to-output map (feed-through)

qi ∈ R4 state vector of 4-state combined lateral and attitude model, i = 1, 2

q3 ∈ R2 state vector of vertical dynamics subsystem model

xl ∈ R8 state vector of 8-state combined lateral and attitude discrete-time model for both lateral
axes

ul ∈ R2 input vector of 8-state combined lateral and attitude discrete-time model for both lateral
axes

kz ∈ R2×1 affine term in vertical dynamics subsystem model

kl ∈ R4×1 affine term in 8-state combined lateral and attitude discrete-time model for both lateral
axes

x ∈ R10 combined (10-state) quadrotor dynamics discrete-time model state vector

y ∈ R5 combined (10-state) quadrotor dynamics discrete-time model output vector

ε ∈ R5 measurement noise in combined (10-state) quadrotor dynamics discrete-time model output
equation

PN ∈ Rn×n final state cost weighting matrix in MPC cost function

Q ∈ Rn×n stage state cost weighting matrix in MPC cost function

R ∈ Rm×m stage input cost weighting matrix in MPC cost function

δu ∈ Rm differential input vector in δu-formulation MPC model

r ∈ Rp reference output in δu-formulation MPC model

x̂ ∈ R10 estimated quadrotor state

x̃ ∈ R10 quadrotor state predicted with learned model

x̄ ∈ R10 quadrotor state predicted with nominal model

6

1.3 Notation

x ∈ R10 actual quadrotor state vector

xb ∈ R6 actual ball state vector

x̂b ∈ R6 estimated ball state vector

û ∈ Rn estimated input

U0 ∈ Rmn stacked vector of all input vectors over MPC horizon

w ∈ R4 state noise vector (explicit MPC model for one axis)

F (β) ∈ R10×10 oracle updates to dynamics matrix

H(β) ∈ R10×3 oracle updates to input-to-state map

z(β) ∈ R10 oracle updates to affine term of dynamics model

K ∈ R3×10 nominal feedback gain

K̄ ∈ R3×10 feedback gain used for computations of terminal set

K̂ ∈ R10×5 feedback gain matrix used in dual EKF state estimate update

Kb ∈ R6×3 feedback gain matrix used in ball observer state estimate update

β ∈ R12 vector of true parameters in oracle model

β̂ ∈ R12 vector of estimated parameters in oracle model

ξ ∈ R3 vector parametrizing points that can be feasibly tracked with a linear controller

ǔ ∈ R3 input vector in LBMPC optimization

c∗ ∈ R3 optimal input

ys ∈ R5 steady-state output

xs ∈ R10 steady-state state

us ∈ R3 steady-state input

Λ ∈ R10×3 subspace projection of ξ into state space

Ψ ∈ R3×3 subspace projection of ξ into input space

Π ∈ R5×3 subspace projection of ξ into output space

x0 ∈ R10 steady-state affine subspace offset vector in state space

u0 ∈ R3 steady-state affine subspace offset vector in input space

y0 ∈ R5 steady-state affine subspace offset vector in output space

µ ∈ R12 parameter noise vector

P2 ∈ R10×12 cross-covariance matrix between state and parameter estimates

P3 ∈ R12×12 covariance matrix of parameter estimate

M ∈ R10×12 matrix of partial derivatives of oracle update equation with respect to parameters

Ξ ∈ R5×5 covariance matrix of measurement noise

Υ ∈ R12×12 covariance matrix of parameter process noise

L ∈ R12×5 feedback gain in dual EKF parameter update equation

x̄D ∈ R10 bounds on state uncertainty

FG ∈ R3 force due to gravity

FD ∈ R3 force due to air drag

V ∈ R3 instantaneous velocity vector of ball

xb ∈ R6 state vector of ball

x̂c ∈ R10 predicted intercept of ball trajectory with plane at catching altitude

7

Chapter 1 Introduction

Other

G(s) attitude subsystem input-output transfer function

J∗ (x) : Rn → R optimal value of cost function in mp-QP for given state x

J(z, x) : Rs × Rn → R cost function in mp-QP for given vector of decision variables z and state vector
x

J∗0 (x(0)) : Rn → R optimal value of cost function in CFTOC mp-QP for given initial state x(0)

J0(x(0), U0) : Rn × RmN → R cost function in mp-QP for given vector of decision variables z and state
vector x

h(x, u) : Rn × Rm → Rn unmodeled dynamics in system model

FN (x, u) : Rn × Rm → Rn LBMPC nominal dynamics model (difference equation)

Om(x, u) : Rn × Rm → Rn oracle updates to model at timestep m

8

Chapter 2

Quadrotor Dynamics Model

2.1 Overview

In this chapter we first briefly describe the theory of operation of quadrotor helicopters. We then
describe the models used for the controller design in later chapters, and conclude with a description of
the system identification that was performed to obtain estimates of the key parameters of these models.

2.2 Quadrotor theory of operation

The basic principle of operation of a quadrotor helicopter consists in the generation of net force and
torque through variation of the rotational speeds of the four rotors. Detailed treatment of the dynamics
of quadrotor motion can be found in, e.g., (Hoffmann et al., 2011). Here, we assume a simplified model
that is suitable for an operating regime around steady hover, and we summarize in this section the
aspects of quadrotor operation that are relevant to near-hover flight.

Quadrotors are so named because of their characteristic set of four identical rotors. We will assume here
only fixed-pitch rotors, although variable-pitch quadrotors are being investigated by some researchers
(Cutler, 2012). The rotors are the only actuators in this system, and at each instant each will exert a
force and moment on the quadrotor’s airframe. The rotors are set up in counter-rotating pairs as shown
in Fig.2.1, such that when they are all rotating at the same speed, the moments exactly cancel. Further,
when the motors rotate at a particular equal speed, and the plane of the rotors is perpendicular to the
vertical, sufficient overall thrust is produced so that the vehicle neither gains nor loses altitude. If the
quadrotor is also at zero velocity relative to some inertial frame then this is considered to be the hover
condition of the quadrotor.

The quadrotor’s position and orientation in space can be modified from the hover condition by varying
the speeds of the motors from their hover speed. To induce an angular acceleration about the quadrotor’s
yaw axis (the axis coincident with vertical, when the quadrotor is level with the ground), rotors 1 and 3
(with reference to Fig.2.1 for the rotor numbering) would together increase/decrease their rate while
rotors 2 and 4 decrease/increase their rate. Angular accelerations about roll and pitch axes (the axes
labeled b1 and b2 in Fig.2.1 resp.) are induced when one rotors on the alternate axis increases its
speed while the other decreases. For example, to induce a positive pitch acceleration, rotor 1 would
increase in speed while rotor 3 would decrease. Lateral accelerations are induced whenever roll and/or
pitch are nonzero (they are both zero when the quadrotor is level with the ground) by virtue of the
overall net thrust vector of the quadrotor (i.e. the sum of the four thrust vectors, one from each rotor)
having nonzero components in the horizontal plane when this is the case. To increase or decrease
altitude requires a nonzero net force in the vertical axis; this is achieved by simultaneously increasing
or decreasing the speeds of all four rotors by the same amount. These translational accelerations will be
the ones we are most interested in, and because they are coupled to the angular rotation, this coupling
is an important consideration in any dynamical model of the quadrotor.

9

Chapter 2 Quadrotor Dynamics Model

1

2

3

4

Figure 2.1: Quadrotor rotor numbering convention and sense of rotation of rotors. View is from above,
looking down at the quadrotor. Two of the body-fixed axes (b1 and b2) are also shown.

2.3 Quadrotor models for near-hover operation

In this section we describe in detail the specific models for the quadrotor that are used in later chapters.
Quadrotors, like all rotorcraft, are subject to a number of important aerodynamic effects, beyond those
that are behind its basic principle of operation: each motor develops a force and moment that are
roughly proportional to the motor’s speed, as the attached rotor effects momentum change of the
surrounding air. However, we have in mind applications (e.g. mobile sensor networks, surveillance) in
which the translational position and velocity of the quadrotor are of primary interest, while the vehicle’s
attitude is secondary. By this we mean that changes in pitch and roll attitude serve to induce lateral
translational accelerations to change the vehicle’s translational position and velocity, but we usually are
only interested in changing pitch and roll as a means to an end (that of inducing lateral accelerations).

In all the models considered here, we treat the yaw angle as fixed; equivalently yaw is handled by a
completely separate controller and the models we describe here can be considered to be transformed
such that “pitch” and “roll” are interpreted as angles in a body frame unaffected by the yaw angle, i.e.
always oriented such that the body axis b1 coincides with inertial axis x1, and body axis b2 with inertial
axis x2 (with reference to Fig.2.2).

In general, we start by imagining the quadrotor as a free body subject to two forces: that of gravity, and
the total thrust from the rotors, which is taken to act in a direction opposite to the body z axis. We can
consider the motion in each of the two perpendicular vertical planes (the x1 − x3 plane and the x2 − x3

plane) separately; since gravity always acts in the same direction, the only variation in the forces relates
to the direction and magnitude of the thrust vector. However, to completely decouple the axes, and
obtain a linear model, we will assume when considering the lateral (horizontal) dynamics that the
vertical dynamics are in static equilibrium, and vice-versa. This fixes the magnitude of the thrust vector
(since it must be that which coincides with zero vertical acceleration) and the only remaining variable
is the direction of the thrust in each vertical plane, or equivalently, the angle between the (projected in
a given plane) thrust vector and the vertical.

Now the dynamics of this angle (call it θ) are due to moments generated about an axis perpendicular to
the plane by unequal thrust on either side of the vehicle. Conceptually it is perhaps easiest to think

10

2.3 Quadrotor models for near-hover operation

inertial frame

quadrotor
body frame

Figure 2.2: Relationship between inertial frame FI and quadrotor body frame FB .

of this as the difference in thrust between opposing pairs of rotors, though in general the plane in
consideration may be such that a mixture of rotors is in play. At any rate, it suffices to note that the
thrust from a given rotor is effectively proportional to its rate of rotation; indeed the whole control task
at the low level for a quadrotor consists in judicious modulation of the speeds of each of the four rotors
to obtain a desired motion of the vehicle.

For our purposes though, we will delve no further into the physics behind the attitude dynamics. The
main reason for this is a practical one: the actual system that we will perform experiments on, a
quadrotor based on the Ascending Technologies (AscTec) Pelican, is equipped with closed-loop attitude
regulation “out of the box”. That is, it accepts desired pitch and roll angles and implements a feedback
controller to drive the error between commanded and actual angles towards zero. The exact structure
of this controller is in fact not known to us; it is implemented in proprietary code on the “low level” (LL)
microcontroller on the Pelican (see Appendix A). AscTec does provide a utility that allows the user to
modify some control gains, in particular proportional (P) and derivative (D) gains for the roll and pitch
axes can be selected. So we assume that the attitude controller is some type of PD based controller,
though we don’t know the specifics. This leads us towards system identification, which we will discuss
in more detail below. But here it is worth pointing out the main conclusion we have drawn about the
attitude controller based on our testing: it seems it may be reasonably well-modeled by a second-order
transfer function.

Ultimately what we will obtain is a model in which each lateral axis has a rotational subsystem that
describes the dynamics of the angle θ, and this angle is the input to a translational subsystem which
is simply a double integrator; as we will see the angle θ (in radians) is effectively identically the
acceleration in that lateral axis, in g’s. That is, if θ = 0.1 rad, then the corresponding translational
axis will undergo an acceleration of 0.1 g = 0.981 m/s2. The vertical dynamics model will be even
simpler: just a double integrator with a constant force of mg in the (inertial frame) +z direction, and a
controlled input of 0 ≤ T ≤ T̄ in the −z direction (where T̄ is the maximum thrust of the quadrotor).

In the following subsections we develop these ideas to show the specific form of discrete-time, linear
time-invariant (LTI) models. We start by modeling the attitude subsystem, next the lateral translational
subsystem, then the combined attitude and lateral dynamics for one lateral direction, then we form a
model combining two attitude/lateral systems together to consider both lateral axes in one model, then

11

Chapter 2 Quadrotor Dynamics Model

a model of the dynamics of the vertical subsystem, and finally we put the last two models together for a
full model of the translational dynamics of the quadrotor, including the pitch/roll attitude subsystems.

2.3.1 Preliminaries

The quadrotor’s position and orientation are expressed in terms of a body-fixed frame with axes
FB := {b1,b2,b3}, with respect to an inertial frame with axes FI := {x1,x2,x3}. Define the state
of the system x = (x1, ẋ1, θ1, θ̇1, x2, ẋ2, θ2, θ̇2, x3, ẋ3)T ∈ R10, where x1, x2, x3 are the components of
the vector from FI to FB, expressed in FI , and θ0, θ1, θ2 are the rotations (in radians) in a 3-2-1
(yaw-pitch-roll) rotating axes Euler sequence taking FI to FB. In the present work, we assume that
θ0 (yaw) is held fixed which is why we do not include it in the state vector. We already illustrated
the inertial and quadrotor body frames in Fig.2.2, and Fig.2.3 illustrates the axes of rotation of the
quadrotor.

yaw

pitch

roll

Figure 2.3: Axes of rotation: θ0 (yaw) about b3 axis (going into the page); θ1 (pitch) about b2 axis;
and θ2 (roll) about b1 axis.

2.3.2 Attitude Dynamics

We assume that the closed-loop attitude dynamics can be approximated by a second-order system (i.e.
one that can be thought of as a torsional inertia-spring-damper). This is based on observations from
experiments with step inputs which we detail below. We will assume that the pitch and roll dynamics
are decoupled and identical to one another; in the following for ease of presentation we will simply
refer to the angular dynamics of the pitch axis.

We therefore assume an input-output (where input is desired pitch angle θr and output is actual pitch
angle θ) transfer function model of the form

G(s) =
n0

s2 + d1s+ d0
. (2.1)

Note that this corresponds to the differential equation

1

n0
θ̈(t) = − d1

n0
θ̇(t)− d0

n0
θ(t).

An equivalent continuous-time state-space single-input single-output (SISO) model (in observable
canonical form) is

d

dt
x(t) = Acx(t) +Bcu(t) (2.2)

=

[
−d1 1
−d0 0

]
x(t) +

[
0
n0

]
u(t), (2.3)

y(t) =
[
1 0

]
x(t),

12

2.3 Quadrotor models for near-hover operation

where x(t) =

[
x1(t)
x2(t)

]
is the state, the input u(t) = θr(t) (reference input), and the output y(t) = θ(t).

Finally, for implementation in our MPC framework, we convert this to a discrete-time representation
, with sample time δt , using the exact discretization (assuming zero-order-hold of the input, i.e.
u(t+ s) = u(t) for s ∈ [0, δt])

Aθ = eAcδt, Bθ =
´ δt
0
eAcτdτBc . (2.4)

yielding a difference equation discrete-time linear, time-invariant (LTI) model,

x+θ = Aθxθ +Bθuθ (2.5)

θ = yθ = Cθxθ.

2.3.3 Lateral translational dynamics

We again assume identical, decoupled axes for the lateral motion. We will assume a point mass model
and neglect air drag. The lateral (horizontal) acceleration is due to the horizontal component Tx of the
quadrotor’s total thrust T , which always acts opposite the quadrotor b3 axis. In the vertical direction,
the acceleration is due to the net force considering the vertical component Tz of the quadrotor’s thrust
and the force due to gravity mg. Fig.2.4 illustrates this. We assume that the timescale of the thrust

Figure 2.4: Free body diagram for quadrotor lateral translational dynamics. Lateral acceleration is
achieved by developing a lateral force Tx by changing the roll or pitch attitude angle θ.

dynamics is sufficiently fast that we can consider the vertical dynamics to be in equilibrium, thus the
vertical component of the thrust Tz = T cos θ = mg, so T = mg

cos θ and so the lateral thrust for some
given θ is Tx = mg sin θ

cos θ . With x(t) here representing the lateral position in a particular axis the model
has the form,

mẍ(t) = mg
sin θ

cos θ
ẍ(t) = g tan θ

13

Chapter 2 Quadrotor Dynamics Model

We linearize (i.e. small angles assumption, tan θ ≈ θ near θ = 0). The linearized model is thus,

ẍ(t) = gθ(t).

The corresponding transfer function is

G(s) =
g

s2
,

which yields a continuous-time observer canonical LTI realization ,

d

dt
x(t) =

[
0 1
0 0

]
x(t) +

[
0
g

]
u(t), (2.6)

y(t) =
[
1 0

]
x(t),

and a corresponding discrete-time LTI model,

xt[k + 1] = Atx[k] +Btut[k] (2.7)

yt[k] = Ctxt[k]

where

At =

[
1 δt
0 1

]
, Bt =

[
δt2

2
δt

]
g, Ct =

[
1 0

]
,

using the same exact discretization of (2.4).

2.3.4 Combined attitude and lateral translational dynamics

Here we describe combining the SISO attitude dynamics, in which the input is the commanded angle
and the output is the actual angle, with the translational dynamics, in which the input is essentially the
actual angle in radians (for the system linearized about the hover condition). Since the input ut to the
translational dynamics system (2.7) is the output yθ of the attitude system (2.5), we have

Btut = BtCθxθ = g

[
δt2

2
δt

] [
1 0

]
xθ =

[
gδt2

2 0
gδt 0

]
xθ.

4-state model for one lateral axis

We now combine the translational and attitude dynamics for a given axis (i.e. roll φ and +y, pitch θ
and -x) to form a 4-state linear time-invariant discrete-time model for that axis:

q+i =

xi
ẋi
θi
θ̇i

+

= Alqi +Blui

=

[
At BtCθ
0 Aθ

]
qi +

[
0
Bθ

]
ui (2.8)

For clarity, here qi ∈ R4, xt, xθ ∈ R2, ui ∈ R, Al ∈ R4×4, Bl ∈ R4×1, At, Aθ ∈ R2×2, Bθ ∈ R2×1. The
index i ∈ {1, 2} denotes which of the two lateral axes is modeled.

14

2.3 Quadrotor models for near-hover operation

8-state model for both lateral axes

Further, it is trivial to then concatenate two copies of (2.8) block-wise, to derive an 8-state model which
models the dynamics of both lateral axes simultaneously:

x+l =

[
q1
q2

]+
= A8xl +B8ul

=

[
Al 0
0 Al

] [
q1
q2

]
+

[
Bl 0
0 Bl

] [
u1
u2

]
(2.9)

=

At BtCθ 0 0
0 Aθ 0 0
0 0 At BtCθ
0 0 0 Aθ

x+

0 0
Bθ 0
0 0
0 Bθ

u

For clarity, here xl =
[
qT1 , q

T
2

]T ∈ R8, q1, q2 ∈ R4, ul = [u1, u2]
T ∈ R2, A8 ∈ R8×8, B8 ∈ R8×1,

Al ∈ R4×4, Bl ∈ R4×1, At, Aθ ∈ R2×2, Bθ ∈ R2×1.

2.3.5 Vertical translational dynamics

The vertical dynamics have no rotational component and can be written in discrete-time for timestep δt
as

q+3 = Azq3 +Bzu3 + kz, (2.10)

where q3 = [x, ẋ3] T , Az = [1 δt0 1], Bz = −KT

m

[
δt2

2 , δt
]T

and KT > 0 is a thrust-to-command ratio to be
determined empirically, the input u3 is the commanded thrust, and

kz =
g

m

[
δt2

2
δt

]
(2.11)

represents the acceleration due to gravity.

2.3.6 Combined lateral and vertical dynamics model

Finally, we describe the form of an overall model of both the lateral (horizontal, parallel to the ground)
and vertical dynamics of the quadrotor. The combined model has a total of 10 states; 3 translational
positions, 2 angles, and the derivatives of each. Since we intend to use this model for MPC, we will
only consider a discrete-time model for a given discrete time step δt. To form this model, we simply
concatenate block-wise the 8-state model for the lateral axes (2.9) with the 2-state model for the vertical

15

Chapter 2 Quadrotor Dynamics Model

dynamics (2.10) to obtain

x+ = Ax+Bu+ k (2.12)

=

[
A8 0
0 Az

] [
xl
q3

]
+

[
B8 0
0 Bz

] [
ul
u3

]
+

[
kl
kz

]

=

At BtCθ 0 0 0
0 Aθ 0 0 0
0 0 At BtCθ 0
0 0 0 Aθ 0
0 0 0 0 Az

q1q2
q3

+

Bl 0 0
0 Bl 0
0 0 Bz

u1u2
u3

+

 0
0
kz

=

1 δt gδt2

2 0 0 0 0 0 0 0
0 1 gδt 0 0 0 0 0 0 0
0 0 A11

θ A12
θ 0 0 0 0 0 0

0 0 A21
θ A22

θ 0 0 0 0 0 0

0 0 0 0 1 δt gδt2

2 0 0 0
0 0 0 0 0 1 gδt 0 0 0
0 0 0 0 0 0 A11

θ A12
θ 0 0

0 0 0 0 0 0 A21
θ A22

θ 0 0
0 0 0 0 0 0 0 0 1 δt
0 0 0 0 0 0 0 0 0 1

x1
ẋ1
θ1
θ̇1
x2
ẋ2
θ2
θ̇2
x3
ẋ3

+

0 0 0
0 0 0
B1
θ 0 0

B2
θ 0 0

0 0 0
0 0 0
0 B1

θ 0
0 B2

θ 0

0 0 −KT

m
δt2

2

0 0 −KT

m δt

u1u2
u3

+

0
0
0
0
0
0
0
0

g
m
δt2

2
g
mδt

where Aijθ refers to the ij-th entry of the system matrix of the discretized rotational dynamics Aθ and
Biθ refers to the i-th entry of the input-to-state map Bθ for the discretized rotational dynamics. In
(2.12) we have expanded all matrices for clarity and to emphasize the block structure. This form also
makes clear which quantities need to be measured or identified: the rotational subsystem input-to-state
map Bθ, which will be a function of continuous-time transfer function (2.1) coefficients d0, d1, n0 and
discrete time step δt; the rotational subsystem dynamics matrix Aθ, a function of d0, d1 and δt; the
thrust coefficient KT ; and the mass m (note that the last two only appear in the vertical dynamics
subsystem and the first two only in the attitude subsystems).

2.4 System Identification

In this section we describe how we identified (or measured) the vehicle-dependent quantities that
appear in the dynamics models of Sec.2.3. First we describe the identification of the parameters of
the attitude dynamics model, and then of the vertical dynamics model. We conclude by forming the
full model discretized to the nominal control frequency for the quadrotor (40 Hz) with the identified
parameters included. The models with parameters identified are used for our controller development,
and have also been used in other work, for example in hierarchical stochastic motion planning (Vitus,
2012).

2.4.1 Attitude dynamics

To realize a system model that is a good approximation of our actual quadrotors, we performed a
rudimentary system identification of the attitude dynamics. The objective was to identify the unknown
coefficients n0, d0, d1 of the transfer function (2.1). This involved issuing step-input pitch (or roll)
commands starting from a hover condition, and measuring the corresponding response of the actual
angle θ(t). The step inputs were performed for differing magnitudes of the step and in different
directions.

Fig.2.5 shows a plot of a typical response, and the overall response for all these tests can be summarized
as follows. The typical response was for the measured angle θ(t) to reach a maximum of 60% of

16

2.4 System Identification

the commanded step value in just under 0.4 seconds. The steady-state value θss(t) appears to be
approximately 50% of the command1. Note that there exist simple relationships between these
observed quantities and the unknown coefficients we seek. Let the proportion of overshoot PO be the
fraction by which the maximum value of the response exceeds its steady state value; thus we have
PO = (0.6− 0.5)/0.5 = 0.2. The peak time tp is the time required for the response to reach the peak
(overshoot) value, so tp = 0.4. Let the DC gain Gdc be the proportion of the steady-state value of the
signal (relative to the input); so Gdc = 0.5. It is customary to define a quantity called the damping ratio
and use for it the notation ζ, and also to call the undamped natural frequency ωn. The relationships
between the observed quantities and the coefficients we seek are then

ζ =

√
ln2 PO

ln2 PO + π2

ωn =
π

tp
√

1− ζ2

n0 = Gdcω
2
n

d0 = ω2
n

d1 = 2ζωn.

With these relationships we obtain n0 = 38.9372, d0 = 77.8743, d1 = 8.0472. Recognizing that our
methodology is rather coarse, we took only the first significant digit and so selected the parameter
values

n0 = 40, d1 = 8, d0 = 80. (2.13)

With these parameters we can now form the continuous time model (2.2) of the attitude dynamics

d

dt
x(t) =

[
−8 1
−80 0

]
x(t) +

[
0
40

]
u(t), (2.14)

y(t) =
[
1 0

]
x(t).

Taking a discretization timestep of δt = 0.025 s (40 Hz, the default control frequency for our quadrotor),
and gravitational constant g = 9.81 m/s2, we can then obtain through exact discretization (2.4)2 the
transition map and input map matrices of the equivalent discrete-time system (2.5),

Aθ =

[
0.7969 0.2247
−1.798 0.9767

]
, Bθ =

[
0.01166
0.9921

]
.

A simulated step response from continuous- and discrete-time models using these parameters is shown
in Fig.2.6.

Finally, we form the combined 4-state discrete-time (for δt = 0.025 s) SISO state-space model for
either the body y or body −x axis, with corresponding input θcmd (pitch) or φcmd (roll) respectively by

1Initially, we were surprised to observe the large steady-state offset. However, we find in the literature a model and supporting
experimental results for non-trivial opposing moments on a similar quadrotor with PD attitude control. This is a manifestation
of a phenomenon on rotorcraft known as ‘blade flapping’ (Hoffmann et al., 2007). The angles and velocities here are
comparable to those in that work, and though its authors do not present step input results, it seems reasonable to conjecture
that the same phenomenon may be at work in the present study. Additional analysis and/or experiments are needed to draw
more certain conclusions, but this is left as a direction for future investigation.

2e.g. using the MATLAB Control System Toolbox command c2d, which produces an exact discretization assuming zero-order-hold
of the input.

17

Chapter 2 Quadrotor Dynamics Model

substituting into 2.8:

x+ =

[
xt
xθ

]+
= Ax+Bu

=

[
At BtCθ
0 Aθ

] [
xt
xθ

]
+

[
0
Bθ

]
uθ

=

1 0.0250 0.0031 0
0 1 0.2453 0
0 0 0.7969 0.0225
0 0 −1.7976 0.9767

[xtxθ
]

+

0
0

0.01
0.9921

uθ (2.15)

Figure 2.5: Typical experimental step response from testing data (input in cyan, output in red). Here
the command is a step change of 10 degrees in the pitch axis. (The horizontal axis is time in seconds)

2.4.2 Vertical dynamics

As noted in Sec.2.3.6, to have a model of the vertical dynamics we need to know the mass m and a
thrust factor KT . The mass was measured with a scale and found to be 1.3 kg. To determine the thrust
factor, we flew the quadrotor at a hover condition (far enough from the ground that ground effect was
not present) and observed the command input that was required to maintain equilibrium. We obtained
a value of KT = 0.91.

2.4.3 Combined lateral and vertical dynamics

Combining the parameters identified in the above, here we present the complete 10-state discrete-time
(for timestep δt = 0.025 s) LTI model for the quadrotor near hover, i.e. (2.12) with all parameters

18

2.4 System Identification

identified,

x+ = Ax+Bu+ k (2.16)

=

[
A8 0
0 Az

] [
xl
q3

]
+

[
B8 0
0 Bz

] [
ul
u3

]
+

[
kl
kz

]

=

At BtCθ 0 0 0
0 Aθ 0 0 0
0 0 At BtCθ 0
0 0 0 Aθ 0
0 0 0 0 Az

q1q2
q3

+

Bl 0 0
0 Bl 0
0 0 Bz

u1u2
u3

+

 0
0
kz

=

1 0.025 0.0031 0 0 0 0 0 0 0
0 1 0.2453 0 0 0 0 0 0 0
0 0 0.7969 0.0225 0 0 0 0 0 0
0 0 −1.7976 0.9767 0 0 0 0 0 0
0 0 0 0 1 0.025 0.0031 0 0 0
0 0 0 0 0 1 0.2453 0 0 0
0 0 0 0 0 0 0.7969 0.0225 0 0
0 0 0 0 0 0 −1.7976 0.9767 0 0
0 0 0 0 0 0 0 0 1 0.025
0 0 0 0 0 0 0 0 0 1

x1
ẋ1
θ1
θ̇1
x2
ẋ2
θ2
θ̇2
x3
ẋ3

+

0 0 0
0 0 0

0.01 0 0
0.9921 0 0

0 0 0
0 0 0
0 0.01 0
0 0.9921 0
0 0 −0.00021875
0 0 −0.0175

u1u2
u3

+

0
0
0
0
0
0
0
0

0.0031
0.2453

.

Finally, the measurement yk ∈ R5 at timestep k for this system are obtained from the states and
subject to some measurement noise εk ∈ R5, which is considered to be an independent and identically
distributed (i.i.d.), bounded stochastic quantity. The measurement equation is

yk = Cxk + εk (2.17)

=

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

xk + εk.

Thus, the measurement vector yk = [x1, θ1, x2, θ2, x3]
T

+ ε.

19

Chapter 2 Quadrotor Dynamics Model

Step Response

Time (sec)

A
m

p
lit

u
d

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.6: Simulated response of closed-loop attitude dynamics model, continuous and discretized
(dT = 0.025 s), for selected parameter values, to a unity step input. Dashed vertical lines illustrate
rise time of 0.4 s to a peak value of 0.6, a DC gain of 0.5, and a settling time (to within 1% of the
steady-state value) of about 0.9 s.

20

Chapter 3

Explicit MPC Control

3.1 Overview

In this chapter we investigate the use of explicit MPC (Bemporad et al., 2002; Tondel, Johansen, and
Bemporad, 2001; Mariethoz, Domahidi, and Morari, 2009) to control the quadrotor in hover. In explicit
MPC, the optimization problem whose solution determines the optimal sequence of inputs is effectively
solved ahead of time. That is, a “multi-parametric” quadratic programming problem is posed, in which
the initial state is the parameter; the solution of this is piecewise affine over polyhedral domains of
the state space. The control law can thus effectively be encoded as a look-up table, resulting in a very
computationally efficient on-line controller implementation.

The main objective here was to explore the use of MPC for the real-time control of the quadrotor. There
is very little prior work described in the literature on explicit MPC for a quadrotor; notably one group
from the University of Patras in Greece has published several papers (Alexis, Nikolakopoulos, and Tzes,
2010a,b, 2011, 2012; Alexis et al., 2011), on a switching (among 3 piecewise-affine (PWA) systems)
explicit MPC controller (though the earlier papers from this group do not use the term MPC) for a
quadrotor, including some experimental results.

Our goal was to implement the reference tracking and disturbance rejection solely using MPC. We
predicted that the nature of MPC, its constant prediction of future inputs based on the state of the
system, would allow for superior disturbance rejection than the original PID controller. As a direct
result, a more stable hover would be achieved.

Since the translational dynamics of the near-hover quadrotor in the vertical direction (perpendicular to
the ground) are generally faster than those in the lateral (parallel to the ground) direction, we elected
to control altitude with an existing linear (proportional-integral-derivative, PID) controller and focus on
regulating the lateral states. Initially we did so separately for each of the translational axes, effectively
completely decoupling the control problem into two models each with a 4-dimensional state space and
single input. Next we formed a composite model by combining two copies of the 4-state model into one
8-state model with a 2-dimensional input. For each model we implemented a standard MPC controller
using the control synthesis capabilities of the Multi-Parametric Toolbox (MPT) (Kvasnica, Grieder, and
Baotic, 2004), and performed flight experiments with compiled versions of these controllers running
on a computer on-board a quadrotor. We finish by implementing a controller that is based on the “δu
formulation” for offset-free MPC (Maeder, Borrelli, and Morari, 2009); this formulation allows the
MPC controller to have a sort of integral action similar to that in a PID controller, which enables the
controller to achieve zero steady-state offset. Again we implemented this controller using the MPT and
performed flight experiments.

The work described in this chapter was part of a semester project with Cameron Rose for ME290J
(Model Predictive Control, Instructor: Prof. F. Borrelli) in Spring 2011 (Bouffard and Rose, 2011).

21

Chapter 3 Explicit MPC Control

3.2 Problem formulation

Here we briefly recapitulate the salient points of what we here call ‘standard’ quadratic program (QP)
MPC, as well as a special class of linear offset-free MPC known as the delta input (δu) formulation.

3.2.1 Standard QP-MPC

Central to the MPC technique is an optimization problem. If the objective is a (convex) quadratic
function and the constraints are affine functions of the decision variables, then this is known as a
quadratic program (QP) (Boyd and Vandenberghe, 2009). Further, if we parametrize the QP by a
vector of parameters x ∈ Rn, this is considered a multiparametric QP (mp-QP) (Borrelli, Bemporad,
and Morari, 2012). The optimization problem is then of the form

J∗(x) = min
z

J(z, x) =
1

2
zTHz (3.1)

subj. to Gz ≤ w + Sx.

Here, the parameter x is the current state. More specifically, the MPC problem is one of solving the
(parametrized) constrained finite-time optimal control (CFTOC) problem

J∗0 (x(0)) = min
U0

J0 (x(0), U0)

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf
x0 = x(0),

where N is the time horizon and Xf ⊆ Rn is a terminal polyhedron. The vector of decision variables is
U0 =

[
uT0 , . . . , u

T
N−1

]T ∈ Rs, s = mN , where uk ∈ Rm, k = 0, . . . , N −1 are the inputs at each timestep
in the horizon. A ∈ Rn×n and B ∈ Rn×m are the dynamics and input-to-state map respectively for
the discrete-time LTI system. The sets X ⊆ Rn and U ⊆ Rm are polyhedral state and input constraints
respectively. The objective is the sum of a final state cost quadratic in the final state xN and stage costs
that are quadratic in the state and inputs at each timestep

J0(x(0), U0) = xTNPNxN +
N−1∑
k=0

xTkQxk + uTkRuk, (3.2)

= ‖xN‖2P +

N−1∑
k=0

‖xk‖2Q + ‖uk‖2R

where PN , Q ∈ Rn×n and R ∈ Rm×m are positive semi-definite matrices which can be designed to
express the relative importance of minimizing individual state components; typically these are chosen
as diagonal matrices, and there are thus 2n+m ’knobs’ for the designer to adjust in this control scheme.

3.2.2 Offset-free QP-MPC using δu formulation

Offset-free MPC (Maeder, Borrelli, and Morari, 2009) seeks to augment the standard MPC formulation
such that an steady-state errors are driven to zero asymptotically. In this sense offset-free MPC is similar
to the addition of an integral term to a PD controller.

22

3.3 Experiments

In the δu formulation we consider a system in which there is uncertainty in the mapping between inputs
and states. The basic idea is to reformulate the system such that we are now trying to determine a
change in input (hence δu) from the previous timestep, rather than the actual input itself. This amounts
to forming a new system with state dimension n+m, where the previous timestep’s input are the new
m state variables. In the δu formulation the system model is thus[

xk+1

uk

]
=

[
A B
0 I

] [
xk
uk−1

]
+

[
B
I

]
δuk

yk =
[
C 0

] [xk
uk−1

]
.

So that the MPC problem is well-defined, we need an estimate of all the states in this new system. We
thus design an observer of the form[

x̂k+1

ûk

]
=

[
A B
0 I

] [
x̂k
ûk−1

]
+

[
B
I

]
δuk +

[
Lx
Lu

]
(−yk + Cx̂k) . (3.3)

Furthermore, the cost function is modified such that there is no terminal cost and the stage state cost is
a function of the difference between reference and desired outputs

J0(x(0), U0) =

N−1∑
k=0

‖yk − rk‖2Q + ‖δuk‖2R . (3.4)

The MPC optimization problem is then

min
U0

J0(x(0), U0)

subj. to xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xk+1 = Axk +Buk, k = 0, . . . , N − 1
yk = Cxk, k ≥ 0
uk = uk−1 + δuk, k ≥ 0
u−1 = ût−1
x0 = x̂t

Here, the cost function is per 3.4, yk, k = 0, . . . , N − 1 is a sequence of reference outputs to track, and
the vector of decision variables U0 =

[
δuT0 , . . . , δu

T
N−1

]T ∈ Rs now consists of the difference between
the inputs and their values at the prior timestep. At run time, the control input is the sum of the
previous input and the first optimal δu from the optimizer of the QP:

u(t) = δu∗0 + u(t− 1).

3.3 Experiments

To design the explicit QP-MPC controllers we used the Multi-Parametric Toolbox (MPT)(Kvasnica,
Grieder, and Baotic, 2004). The MPT allows one to specify the MPC problem in terms of the key
parameters, including system matrices A,B,C,D of an LTI system, the prediction horizon N , the cost
function weighting matrices Q, PN and R (from a cost function of the form (3.2)), input and state
constraints U and X . MPT will then automatically form a QP of the form (3.1) and produce a solution
parametrized by the initial state x(0).

In this section we describe the design, implementation, and testing in flight on-board the quadrotor, of
three different explicit MPC controllers. The first two controllers are based on the standard QP-MPC
formulation described in (Sec.3.2.1), and the third uses the

23

Chapter 3 Explicit MPC Control

3.3.1 Dual, decoupled standard explicit CFTOC MPC

3.3.1.1 Controller design and implementation

We first designed a standard explicit MPC controller solving the CFTOC problem. For simplicity we
implemented the control of each lateral axis (x/pitch and y/roll) of the quadrotor completely separately
using the same explicit controller on each axis (hence, ‘dual, decoupled’). The key parameters of
the controller design are shown in Table 3.1. We encoded these parameters into the sysStruct and
probStruct structures and used the function mpt_control to generate the explicit MPC controller. The
mpt_control command took 31.6 seconds to complete1 and the resulting controller consisted of 675
polyhedral regions.

We used the mpt_exportc command to generate a C header file encoding the controller in terms of
the polyhedral regions and piecewise affine control law for each region. The header file consists
primarily of the array MPT_H of type float (32-bit) with 33325 entries, which thus should occupy
33325*4/1024 = 130 kB in RAM at run-time. This header file was used together with a new controller
code implemented in C++ and integrated into the existing quadrotor software framework (Bouffard,
2011). Compiled code was transferred to the quadrotor’s computer (see Sec.A.1) to run on-board
during flight experiments.

Symbol(s) Value Description, units
N 10 prediction horizon [steps]
n 4 dimension of state space
m 1 dimension of input space
δt 0.1 discrete-time model timestep [s]

A,B,C,D
per (2.8), given parameters

(2.13) and (2.4) LTI system matrices

u 10
(
π

180

)
maximum input [rad]

u −10
(
π

180

)
minimum input [rad]

x [
1, 5, 10

(
π

180

)
, 50

(
π

180

)]T state constraints (upper limit of box constraint)
[m, m/s, rad, rad/s]

x -x state constraints (lower limit of box constraint)
[m, m/s, rad, rad/s]

Q diag {10, 0.1, 0.1, 0.1} cost function stage weight on states
R 0.001 cost function stage weight on input
PN diag {10, 0.1, 0.1, 0.1} cost function weight on final state
w [0.0001, 0.005, 0.0001, 0.005]

T bounded additive noise (see (Kvasnica, Grieder, and
Baotic, 2006, p. 32)

Table 3.1: Key parameters for dual, decoupled explicit MPC controller for one axis.

3.3.1.2 Experimental results

The experiments using the dual, decoupled CFTOC controller were preliminary, exploratory work that
led to the final offset-free formulation. We include here our subjective observations from these initial
experiments, that were meant to help us determine the final form of our problem.

The regulation performance was good, though the lack of coupling between the axes was noticeable
when the controller recovered from large disturbances; typically the path back to the origin would not
be along a straight line but rather one or the other axis would be zeroed out considerably before the
other. This motivated the second preliminary formulation, described next.

1Thinkpad T410, Intel Core i7 M 620 CPU 2.67 GHz, 4 MB cache, Ubuntu 12.04 64-bit, MATLAB R2011b 64-bit

24

3.3 Experiments

3.3.2 Coupled standard explicit CFTOC MPC

Next, we designed another standard explicit MPC controller for the CFTOC problem, but this time
we formed an 8-state LTI system to represent the full planar/roll/pitch dynamics in one model. The
motivation was to explore whether the explicit MPC technique could handle a higher-order system.
Even though the system consists of two completely decoupled subsystems (i.e. system matrices are
block-diagonal), the closed-loop controller implicitly couples the two subsystems via the cost function.
That said, since our weighting matrices are all diagonal, we did not expect this coupling to be evident
in the controller’s performance. Again, we were mostly interested here in the problem size. The key
parameters of the controller design are shown in Table 3.2.

Symbol(s) Value Description, units
N 4 prediction horizon [steps]
n 8 dimension of state space
m 2 dimension of input space
δt 0.25 discrete-time model timestep [s]

A,B,C,D
per (2.9), given parameters

(2.13) and (2.4) LTI system matrices

u 10
(
π

180

)
· [1, 1]

T maximum input [rad]
u −10

(
π

180

)
· [1, 1]

T minimum input [rad]

x

[
1, 5, 10

(π

180

)
, π,

1, 5, 10
(π

180

)
, π
]T state constraints (upper limit of box constraint)

[m, m/s, rad, rad/s]

x -x state constraints (lower limit of box constraint)
[m, m/s, rad, rad/s]

Q
diag{10, 0.1, 0.1, 0.1,

10, 0.1, 0.1, 0.1}
cost function stage weight on states

R diag {0.001, 0.001} cost function stage weight on input

PN
diag{10, 0.1, 0.1, 0.1,

10, 0.1, 0.1, 0.1}
cost function weight on final state

w [0.0001, 0.005, 0.0001, 0.005]
T bounded additive noise (see (Kvasnica, Grieder, and

Baotic, 2006, p. 32)
Table 3.2: Key parameters for combined 8-state system explicit MPC controller for both lateral axes

Note that we found that a horizon of N = 10 took a very long time to compute (and moreover, during
computations would also emit an error message about numerical problems with the linear program
(LP) solver), and so we reduced the horizon to N = 4 and increased the discrete time step to δt = 0.25 s
(such that the horizon would be longer than the settling time of the attitude dynamics).

25

Chapter 3 Explicit MPC Control

The mpt_control command took 38.5 seconds to complete2 and the resulting controller consisted
of 361 polyhedral regions. We further used the mpt_simplify command to perform a simplification
which reduces the number of polyhedral regions using a heuristic greedy merging algorithm. This
simplification took 26.5 seconds to complete and resulted in a controller based on 224 polyhedral
regions.

We again used the mpt_exportc command to generate a C header file, in which the MPT_H array
consisted of 42490 entries, which thus should occupy 42490*4/1024 = 166 kB in RAM at run-time.

3.3.2.1 Experimental results

The performance was again good, in terms of maintaining the quadrotor’s hover position within some
small ε of a mean position x̄hover, however that mean position x̄hover was clearly offset from the origin,
which is the desired position in this problem. Fig.3.1 shows this offset; the mean position of the
quadrotor is approximately (0.05, 0.01) m. This illustrated one of the drawbacks of the standard MPC
framework for regulation, namely that there is no ‘integral action’ that automatically adds to the input
based on an accumulation of integrated steady-state error. This motivated us to ultimately investigate
an implementation of offset-free MPC.

Figure 3.1: Standard MPC: trajectory of the quadrotor at hover altitude, two views towards perpendic-
ular headings.

3.3.3 Offset-free MPC

We finally implemented an offset-free, delta input (δu) formulation, MPC in an attempt to address the
steady state offset. Implementing the delta input formulation took somewhat longer as an estimator
had to be designed and implemented, and several bugs shaken out of the first implementations.

3.3.3.1 Controller design and implementation

The key parameters of the controller design are shown in Table 3.3.

The mpt_control command took 1514 seconds to complete3 and the resulting controller consisted of
4963 polyhedral regions (in 12 dimensions, recall that for the δu formulation the parametrization is
over the augmented state). We further used the mpt_simplify command to perform a simplification

2Thinkpad T410, Intel Core i7 M 620 CPU 2.67 GHz, 4 MB cache, Ubuntu 12.04 64-bit, MATLAB R2011b 64-bit
3Thinkpad T410, Intel Core i7 M 620 CPU 2.67 GHz, 4 MB cache, Ubuntu 12.04 64-bit, MATLAB R2011b 64-bit

26

3.3 Experiments

which reduces the number of polyhedral regions using a heuristic greedy merging algorithm. This
simplification took 2094 seconds to complete and resulted in a controller based on 4084 polyhedral
regions.

We again used the mpt_exportc command to generate a C header file, in which the MPT_H array
consisted of 1621060 entries, which thus should occupy 1621060*4/1024 ≈ 6.3 MB in RAM at
run-time.

Symbol(s) Value Description, units
N 4 prediction horizon [steps]
n 8 dimension of state space
m 2 dimension of input space
δt 0.25 discrete-time model timestep [s]

A,B,C,D
per (2.9), given parameters

(2.13) and (2.4) LTI system matrices

u 10
(
π

180

)
· [1, 1]

T maximum input [rad]
u −10

(
π

180

)
· [1, 1]

T minimum input [rad]

x

[
1, 5, 10

(π

180

)
, π,

1, 5, 10
(π

180

)
, π
]T state constraints (upper limit of box constraint)

[m, m/s, rad, rad/s]

x -x state constraints (lower limit of box constraint)
[m, m/s, rad, rad/s]

Q
diag{10, 0.1, 0.1, 0.1,

10, 0.1, 0.1, 0.1}
cost function stage weight on states

R diag {10, 10} cost function stage weight on input

PN
diag{10, 0.1, 0.1, 0.1,

10, 0.1, 0.1, 0.1}
cost function weight on final state

w [0.0001, 0.005, 0.0001, 0.005]
T bounded additive noise (see (Kvasnica, Grieder, and

Baotic, 2006, p. 32)
Qy diag {10, 10}

Table 3.3: Key parameters for combined 8-state system explicit MPC controller for both lateral axes

3.3.3.2 Estimator design and implementation

The innovation gain matrix was computed by solving a discrete time algebraic Riccati equation for P

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) +Q.

27

Chapter 3 Explicit MPC Control

The Q and R matrices are covariance matrices for the estimated state vector and estimated input vector,
respectively, and were chosen as

Q = diag {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 10, 10} ,

R = diag {1, 4, 1, 4} .

The innovation gain matrix was then computed by using the solution P

[
Lx
Lu

]
= (BTPB +R)−1(BTPA).

3.3.3.3 Experimental results

A notable pitfall with this formulation was that the MPC seemed much more prone to being infeasible
than the earlier controllers. We noticed that the input estimate û would often spike above the input
constraint ū coincident with the onset of infeasibility. More investigation is required but it was observed
that modifying the covariance matrices in the Kalman filter design has an impact on the rate of
occurrence of infeasibility, so we suspect that further tuning of the filter might be of use.

The primary performance metric of interest in this application is the accuracy of the hover point relative
to the commanded reference r (the origin). We are interested in the mean deviation from the reference
when the quadrotor is in steady hovering flight, with no artificial disturbances added. This can be seen
in a phase plot showing the two position states in the plane (essentially, a ’top view’ of the trajectory
of the quadrotor) and in a histogram of the offsets from the origin, as seen in Fig. Fig.3.2. Note that
despite the zero-offset form used, it appears that the MPC controller allows a non-zero offset to persist.
The mean (x, y) position during this time period is (0.0172, 0.004) m. By comparison, the PID controller
performs better in this regard as can be seen in Fig. Fig.3.3; the mean position for the PID controller is
(0.0003,−0.0003) m. Nonetheless, this should not at this point be taken as an indication that the MPC
controller is not capable of besting the PID in this performance metric; only that further tuning should
be attempted.

�0.10 �0.05 0.00 0.05 0.10
East [m]

�0.05

0.00

0.05

No
rt

h
[m

]

Top View

(a) Phase plot (’top view’) of trajectory for steady hover

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
distance from origin [m]

0

100

200

300

400

500

Co
un

t

Histogram of sqrt(x^2 + y^2)

(b) Histogram for steady hover

Figure 3.2: δu formulation offset free MPC: Position-holding performance of MPC controller

28

3.4 Discussion

�0.10 �0.05 0.00 0.05 0.10
East [m]

�0.05

0.00

0.05

No
rt

h
[m

]

Top View

(a) Phase plot (’top view’) of trajectory for steady hover

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
distance from origin [m]

0

100

200

300

400

500

Co
un

t

Histogram of sqrt(x^2 + y^2)

(b) Histogram for steady hover

Figure 3.3: PID controller in steady hover

3.4 Discussion

In this chapter we have described the design, implementation, and testing in experiment of explicit MPC
controllers for the quadrotor. One of the objectives of this work was to test the explicit MPC concept in
application on a system of interest. Considering that MPC’s heritage is from the process control industry,
where timescales are generally quite long4, the ability to perform MPC on-line for the real-time control
of the quadrotor is perhaps a testament to the power of Moore’s Law in the intervening decades.

In terms of general observations, we can report that the explicit MPC controller’s runtime CPU require-
ments were not an issue, something that was not obvious at the outset given the large (> 6 MB, much
larger then the Atom CPU’s cache size of 512 kB) size of the data table for the brute-force search. From
a design point of view though, the most striking difference from the PID controller is the number of free
parameters available for tuning the MPC controller (at minimum, the diagonal dimensions of the Q and
R matrices for both the MPC problem and the estimator) as compared to simply 6 (3 per axis) for the
PID. This could be considered either an advantage or a disadvantage depending on how nuanced one
wants to be in the control design, or how closely one’s performance requirements can be expressed as a
quadratic cost function.

In designing the explicit MPC controllers, particularly the δu formulation controller where the aug-
mented state exacerbates this issue, we were quite aware of its main drawback: We had to reduce the
horizon (we would have preferred to use a horizon of at least N = 15 steps at the full control sampling
rate of 40 Hz) and consequently increase the MPC sampling rate; this degrades the performance of
the resulting controller. We had to do this because the computation time for the explicit controller
grows exponentially in the number of timesteps, and size of state and input vectors. Now certainly
Moore’s Law will (eventually) help out here as well, but even if we succeed in computing an explicit
MPC controller for a ‘larger’ MPC problem, the resulting control law will in general be defined over
an exponentially increasing number of polytopes, so at some point memory (both consumption and
speed of access) could become an issue at runtime. These experiences helped motivate our looking into
on-line MPC, and the controller considered in the next chapter is one of this type.

4in the introductory lecture to his MPC class, Prof. Borrelli includes a film from the 1970’s in which state measurements are fed
into an IBM mainframe computer by punch cards and the optimal inputs manually relayed from the computer’s output to
control operators by telephone!

29

Chapter 3 Explicit MPC Control

30

Chapter 4

Learning-Based MPC Control

In this chapter, we present details of the real time implementation on-board a quadrotor helicopter of
learning-based model predictive control (LBMPC). LBMPC rigorously combines statistical learning with
control engineering, while providing levels of guarantees about safety, robustness, and convergence.
Experimental results show that LBMPC can learn physically based updates to an initial model, and
how as a result LBMPC improves transient response performance. We demonstrate robustness to
mis-learning. Finally, we show the use of LBMPC in an integrated robotic task demonstration. The
quadrotor is used to catch a ball thrown with an a priori unknown trajectory.

The content of this chapter has in part been previously presented in two papers (Bouffard, Aswani, and
Tomlin, 2012; Aswani, Bouffard, and Tomlin, 2012).

4.1 Overview

Recent results in the applications of learning techniques to robotic systems (e.g., (Abbeel, Coates, and
Ng, 2010; Tedrake et al., 2010)) suggest exploring how they might integrate with control techniques;
indeed, this is an active area of research (Gillula and Tomlin, 2011). Learning-Based Model Predictive
Control (LBMPC) (Aswani, Gonzalez, Sastry, and Tomlin, 2012a) is a new model-based control strategy
that also allows for on-line updates to the model to improve performance, while maintaining certain
guarantees about safety, robustness, and convergence. LBMPC combines aspects of learning-based
control and model predictive control (MPC, (Langson et al., 2004)). Adaptive control (Åström and
Wittenmark, 1994; Sastry and Bodson, 1994) aims to match the performance of a reference model
with on line updates, and MPC optimizes a cost function subject to system constraints. Like robust
control, LBMPC can deal with uncertainty directly, but also allows the designer to specify performance
objectives to optimize and explicitly incorporates on line model updates to further improve performance.
LBMPC is compatible with many learning techniques; previous work has employed a modified Nadaraya-
Watson estimator with Tikhonov regularization (Aswani et al., 2012a) and a semi-parametric regression
estimator (Aswani et al., 2012b).

In this chapter, we present details and experiments of an implementation of LBMPC that runs in real
time on-board a quadrotor UAV with limited computing performance and memory. Here, we outline a
control architecture that uses a modified extended Kalman filter (EKF) to perform state estimates and
learn updated model parameters. LBMPC formulates the control problem as the solution of a convex
optimization problem.

Experiments show LBMPC has similar computational requirements to linear MPC, but can improve
performance by allowing the models used to be updated on-line. The experiments demonstrate learning
updates including the “ground effect” (Leishman, 2006) (increased aerodynamic lift when the UAV is
operating close to the ground). LBMPC provides robustness against mis-learning; that is, even if the
learning algorithm is poorly designed or tuned, the formulation provides safety. To demonstrate the
precision control possible using LBMPC, we program the quadrotor to catch balls.

31

Chapter 4 Learning-Based MPC Control

Organization This chapter is organized as follows. We begin in Sec.4.2 by providing a description
of the theory of LBMPC and extensions thereof required for its application to quadrotor control. In
Sec.4.3 we detail the design of the LBMPC controller, including the particular form of learning we used.
In Sec.4.4 we describe some implementation details. In Sec.4.5, we describe the experimental setup
and results. Finally in Sec.4.6 we offer some concluding remarks.

4.2 Theory

The LBMPC technique is described in detail in (Aswani et al., 2012a); here we recapitulate the most
important features, and in particular describe extensions that are specific to our application of LBMPC
to the control of the quadrotor. We start by briefly describing the model of the quadrotor we used.

4.2.1 Quadrotor Vehicle Model

To design an LBMPC controller for the quadrotor, we require a linear (or affine) time-invariant discrete-
time nominal model which, with considerations for a bounded uncertainty or modeling error, will be
the model used for verifying constraint satisfaction (i.e. safety) in the optimization central to LBMPC.
The model we used was,

x+ = Ax+Bu+ k + h(x, u) (4.1)

y = Cx+ ε (4.2)

where the matrices A,B,C are as defined in (2.16) and (2.17). The term h(x, u) represents the
unmodeled dynamics of the system. Thus the “nominal” dynamics state update (the case in which
h ≡ 0) is,

x+ = FN (x, u) := Ax+Bu+ k. (4.3)

4.2.2 Overview of learning-based model predictive control theory

At the heart of the LBMPC control scheme is the on-line solution of a convex optimization problem—
specifically, a quadratic program (QP). At timestep m, we solve the QP,

min
c·,θ

‖x̃m+N − x̄s‖2P +

N−1∑
j=0

‖x̃m+j − x̄s‖2Q + ‖ǔm+j − ūs‖2R (4.4)

s.t. x̃m = x̄m = x̂m (4.5)

x̃m+i = (A+ F) x̃m+i−1 + (B +H) ǔm+i−1 + k + z (4.6)

x̄m+i = Ax̄m+i−1 +Bǔm+i−1 + k (4.7)

ǔm+i−1 = Kx̄m+i−1 + cm+i−1 (4.8)

x̄m+i ∈ X (4.9)

ǔm+i−1 ∈ U (4.10)

x̄m+1 ∈ X 	D (4.11)

(x̄m+1, ξ) ∈ ω (4.12)

for i ∈ {1, . . . , N} where N is the number of steps forward in time over which the optimization is
performed (i.e., the “horizon”). The different notions of the state are indicated by marks on the symbol;
hence x (no marks) indicates the true state, x̂ the estimated state, x̃ the predicted state incorporating the

32

4.2 Theory

oracle, and x̄ the predicted state using the nominal model. The desired state is xs, and us is the steady-
state control that would maintain the state at xs, i.e. us solves (A+ F − I)xs + (B +H)us + k+ z = 0
and this solution can be obtained explicitly by means of the Moore-Penrose pseudo-inverse, i.e.

us = (B +H)
†

[− (A+ F − I)xs − k − z] .

K is a constant feedback gain, serving to limit the effects of model uncertainty (Chisci, Rossiter, and
Zappa, 2001). Note that it differs from the feedback gain K̄ used in the definition of the invariant set
Ω, and we comment on this difference in the following subsection. The polyhedral sets X and U are
bounded and convex; they encode the allowable states and inputs, respectively. These are typically
expressed as sets defined by half-space inequalities. For example, X = {x |Fxx ≤ hx}. Note that, owing
to the boundedness of β, X , and U , the oracle is also bounded: Om(x, u) ∈ D for some bounded, convex
polytope D. The set ω is an approximation of the maximal output admissible disturbance invariant
set and ξ ∈ R3 is a parametrization of points that can be feasibly tracked with a linear controller (see
Sec.4.2.3).

The solution {c∗i }
m+N−1
i=m to this QP encodes the optimal—with respect to minimization of the cost

function in (4.4)—sequence of controls to apply to the system over the next N steps based on the
current parameter and state estimates. The actual controls are the ǔ’s, (4.8) used to determine predicted
oracle states x̃ (4.6) used in the cost function and predicted nominal model states x̄ (4.7) used for
constraint satisfaction.

The key output of the QP is only the first control of the sequence of N controls, ǔm = Kx̄m + c∗m. This
is the control that is actually applied to the system; at the next iteration through the control loop, the
QP is solved once again with new state estimates and new oracle dynamics based on updated F,H, z
matrices.

4.2.3 Extensions of LBMPC for quadrotors

LBMPC is based on a linear MPC scheme for tracking (Limon et al., 2008) that can be robustified
using tube-MPC (Chisci, Rossiter, and Zappa, 2001; Langson et al., 2004; Limon et al., 2010), and
LBMPC reduces conservativeness by making the initial condition be fixed rather than be an optimization
parameter (cf. Langson et al. (2004); Limon et al. (2010)). We further modify LBMPC to reduce
conservativeness by assuming that noise enters only into the first time step of the model prediction
(noise still enters into all time steps of the true system); the advantage of this is greatly enlarged regions
of feasibility for the optimization problem that defines the LBMPC. This formulation of LBMPC has the
same robust constraint satisfaction properties of the original form of LBMPC–the results in (Aswani
et al., 2012a) trivially extend to this case.

Feasible set point tracking

Here we introduce some concepts related to feasible set point tracking for a constrained linear affine
system subject to disturbances. The steady-state output ys corresponds to some state xs and input us,
and it can be characterized (Limon et al., 2008, 2010) by the set of solutions to

[
A− I B 0
C 0 I

]xsus
ys

 =

[
−k
0

]
.

These solutions form a set of affine subspaces that can be parametrized–similarly to (Limon et al., 2008,
2010; Aswani et al., 2012a)–as xs = Λξ + x0, us = Ψξ + u0, ys = Πξ + y0, where ξ ∈ R3; Λ,Ψ,Π are
full column-rank matrices with suitable dimensions, and x0, u0, y0 are (possibly zero) vectors.

33

Chapter 4 Learning-Based MPC Control

The maximal output admissible disturbance invariant set Ω ⊆ X × R3 was defined in (Kolmanovsky
and Gilbert, 1998). It is a set of points such that any trajectory of the system with initial condition
chosen from this set remains within the set for any sequence of bounded disturbances, while satisfying
constraints on the state and input. Consider any point (x, ξ) ∈ Ω, where the ξ component parametrizes
points that can feasibly be tracked using a linear controller. If K̄ is a nominal feedback gain such that(
A+BK̄

)
is Schur stable, then the set Ω satisfies: i) disturbance invariance(

Ax+BK̄ (x− (Λξ + x0)) +B (Ψξ + u0) + k, ξ
)
⊕ (D, 0) ⊆ Ω; (4.13)

and ii) constraint satisfaction

Ω ⊆
{

(x, ξ) | x ∈ X ; Λξ + x0 ∈ X ; K̄ (x− (Λξ + x0)) + (Ψξ + u0) ∈ U ; Ψξ + u0 ∈ U
}
.

Invariant set computations for the quadrotor

Robust constraint satisfaction is the property that following the control law provided by LBMPC will
never lead to a situation in which a constraint is violated at some point in the future. It holds for both
the original and modified LBMPC, provided that the set Ω can be computed; however, we are unable to
compute this set for the quadrotor. Because of these difficulties, we use an approximation of Ω that
displays good empirical performance and robustness.

Methods for computing Ω (Gilbert and Tan, 1991; Rakovic and Baric, 2010) start with an initial
polytopic approximation of the set, and they refine the approximation by successively adding linear
constraints to the polytope. The Ω for the quadrotor may be comprised of a very large number of
such constraints, and this may explain why we could not compute Ω–we may not have allowed the
algorithms enough time to terminate. However, using a complex Ω in the LBMPC formulation would
increase the computation time for the controller so as to render it un-implementable in real-time. the
second possible explanation for why we cannot compute Ω is that it does not exist for the parameters of
our quadrotor, but this would be reflective of the overly-conservative nature of this type of robustness
rather than a statement about the controllability of the system.

To overcome these difficulties, we use an outer approximation of the set Ω. The idea is to start by
rewriting the disturbance invariance condition (4.13) as(

Ax+BK̄ (x− (Λξ + x0)) +B (Ψξ + u0) + k, ξ
)
⊆ Ω	 (D, 0) , (4.14)

and then relax it to(
Ax+BK̄ (x− (Λξ + x0)) +B (Ψξ + u0) + k, ξ

)
⊆ X 	 (D, 0) . (4.15)

The set of points that satisfy (4.14) are a subset of the points that satisfy (4.15), because Ω ⊆ X by
construction.

Because the constraints X ,U and disturbance bounds D are compact, convex polytopes, we can exactly
represent the outer approximation of Ω as the points that satisfy a set of linear inequalities. Let
FPx ≤ hP , Fxx ≤ hx, and Fuu ≤ hu be the inequality representations of the polytopes X 	D, X , and
U respectively. The approximation ω is then given by a polytope, which we can express as the set of
points (x, ξ) that satisfy the linear inequalities

FP
(
A+BK̄

)
FPB

(
Ψ− K̄Λ

)
Fx 0
0 FxΛ

FuK̄ Fu
(
Ψ− K̄Λ

)
0 FuΨ

[
x
ξ

]
≤

hp − FP

(
k +B

(
K̄x̄0 − ū0

))
hx

hx − Fxx̄0
hu − Fu

(
K̄x̄0 − ū0

)
hu − Fuū0

 . (4.16)

34

4.3 Control System Design

Feedback gains

Because the functions in the optimization problem are continuous and the constraints are linear, this
implies continuity of the value function (Aswani et al., 2012a); this is in fact one type of robustness
(Grimm, 2004). Input-to-state stability (ISS) can be shown if the oracle is bounded and this scheme can
be proven to be convergent for the nominal model (Aswani et al., 2012a), but we have been unable to
prove this. The reason for this is that existing proof techniques apply to the case where K̄ ≡ K, but
that is not true here. However, our empirical observation of an implementation on the quadrotor is that
this scheme is effectively ISS; the quadrotor tracks a steady point within a root-mean-square error of
about 2 cm in each positional direction.

The reason for having K̄ 6= K is that it leads to better empirical performance on the quadrotor. The
intuition for why this is the case is as follows. The smaller the gain K̄ is, the larger the set Ω will be.
The advantage of a larger Ω is a larger region of feasibility of the LBMPC, and so performance and
robustness will be better. On the other hand, having a large gain K leads to fast convergence and
tracking for the quadrotor, but it would lead to a very small set Ω. Thus, we use different values for
these two gains.

We compute these gains by determining the feedback gain for an LQR controller for the nominal system,
given a state cost weighting matrix Q and input cost weighting matrix R. The difference is that we scale
the input cost weighting matrix R when computing K̄ (feedback gain for terminal set computations) by
a factor of 12.5 as compared to when we compute K (nominal feedback gain). Since the inputs are
penalized more heavily in the computation of K̄, this results in this gain being smaller than K.

4.3 Control System Design

In this section we describe the design of the quadrotor controller incorporating the LBMPC scheme.
The overall control architecture is composed of (i) estimation of the vehicle state and learning of the
unmodeled dynamics, and (ii) an optimization-based procedure for performing closed-loop control.
Both are model-based: The state estimate uses a model of the system to make predictions of the current
state based on the past state and input, and the optimization problem uses a model to evaluate the
result of prospective control policies over a finite planning horizon, and thus select the best policy based
on the corresponding costs. Fig.4.1 shows a schematic that illustrates the overall system setup and
interconnections between the major components.

4.3.1 Vehicle State Estimation and Learning

A natural approach for joint state and parameter estimation is to use an extended Kalman filter
(EKF), and we use a modified EKF (Ljung, 1979) known sometimes as a dual EKF that has improved
convergence conditions when the system is linear in the state for fixed parameters and vice versa. The
reason for its improved convergence is the use of a Luenberger observer to estimate the state and an
EKF to estimate the parameters, instead of an EKF for both the state and parameters.

In the quadrotor, the parameters of the oracle correspond to a linearization of the unmodeled dynamics
about operating points that vary as the quadrotor moves through the state space; consequently, the
parameters will change. The EKF of (Ljung, 1979) requires the addition of a noise term in order to
handle this.

Let m be the current timestep. We assume a linear, time-varying oracle (Aswani et al., 2012a)
Om : R10 × R3 → R10, parametrized by a vector of parameters β ∈ R12, of the form

Om(x, u) = F (β)x+H(β)u+ z(β), (4.17)

35

Chapter 4 Learning-Based MPC Control

QP‐LBMPC

Vicon

setpoint

Dual EKF

measurements

control

state

QP

state
est.

Solver
vehicle dynamics

parameter
estimates

learned
corrections

Figure 4.1: System diagram showing QP-LBMPC for the quadrotor.

in which F , H, and z are linear in the components of β. The exact form of F (β), H(β), and z(β) is
informed by our physical understanding of the system, as detailed in Chapter 2. For clarity, we show
these in the following equations

F (β) =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 β1 β2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 β4 β5 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

;H(β) =

0 0 0
0 0 0
0 0 0
β3 0 0
0 0 0
0 0 0
0 0 0
0 β6 0
0 0 0
0 0 β7

; z(β) =

0
β8
0
β9
0
β10
0
β11
β12

80β12

.

Note that the last component of z(β) is due to the relationship between the two components of kz (see
2.11) for our timestep of 0.025 s.

In what follows, we simply write F , H, and z, dropping the explicit dependency on the parameters β.
The parameters are constrained such that βmin,i ≤ βi ≤ βmax,i, i = 1, . . . , 12. The state update equation
under the learned dynamics is then,

x+ = FO(x, u) := FN (x, u) +Om(x, u)

= (A+ F)x+ (B +H)u+ k + z. (4.18)

The parameters β = {β1, . . . , β12}, can be thought of as “adjustments” to certain entries of the nominal
dynamics matrices. Estimates β̂ of the parameters are determined jointly with estimates x̂ of the state.
We assume that the parameters evolve according to β+ = β + µ where µ is noise. The modified EKF is

36

4.4 Implementation

governed by the set of update equations,

x̂+ = (A+ F)x+ (B +H)u+ k + z + K̂ζ

P+
2 = (A+ F)P2 +MP3 − K̂ΞLT

P+
3 = P3 − LΞLT − δP3P

T
3 + Υ

β̂+ = bound(β̂ + Lζ)

Where L := PT2 C
TΞ−1 and M := ∂

∂β (Fx̂+Hu+ z). Here, ζ = y − Cx̂ is the measurement innova-

tion. The matrix K̂ is a feedback matrix chosen such that A + F (β) − K̂C is Schur (asymptotically
exponentially; all eigenvalues strictly within the unit circle) stable for all β within bounds. This can be
verified using the Bauer-Fike theorem (Bauer and Fike, 1960), for example. The matrices P2 ∈ R10×12,
P3 ∈ R12×12, Ξ ∈ R5×5, and Υ ∈ R12×12 are the cross-covariance between state and parameter esti-
mates, and the covariances of the parameter estimates, the measurement noise, and the parameter
noise, respectively. The tuning parameter δ > 0 improves the numerics. The bound function clips each
parameter to be within the specified limits. Table 4.1 shows the chosen values of the various dual
EKF design parameters (not to be confused with the model parameters β being estimated). Note that
in most cases the upper and lower bounds on each parameter are symmetric, with the exception of
the parameter β7, which the learning is allowed to vary in the negative direction 10 times more than
in the positive direction. This represents encoding our expectation from helicopter physics that the
ground effect will only ever add to the effective lift per unit input (recall that “up” is actually in the
−x3 direction) and not subtract from it.

Observability considerations Suppose that z were not sparse and that every entry was a parameter,
i.e. z = [β8, . . . , β17]. Results in (Aswani et al., 2012a), for instance, show that it is impossible in this
system to simultaneously identify the parameters of this z while computing state estimates x̂ based on
noisy measurements y. The central issue is one of observability. If we augment the state to (x, β), then
being able to identify all the parameters β and estimate the states x is equivalent to the observability of
the system[

x+

β+

]
=

[
(A+ F)x+ (B +H)u+ k + z

β

]
.

These equations are jointly nonlinear in (x, β), even though they are linear in x for fixed β and vice
versa. In our application to the quadrotor, we used standard techniques (Albertini and D’Alessandro,
2002) to verify the joint observability of the unmeasured states and the parameters to be identified by
the oracle.

4.3.2 LBMPC parameters

Here we detail the key parameters used to generate the LBMPC controllers, including the prediction
horizon N , discretization timestep δt, feedback gains (nominal K and terminal set K̄), state and input
box constraints used to derive the state and input constraint polytopes X and U respectively, weighting
matrices Q, R, P used in the cost function, and model uncertainty bounds. We tuned the controller
somewhat differently for different experiments. Parameters that were the same in all experiments are
shown in Table 4.2. The parameters used for the “ball-catching” experiment are shown in Table 4.3,
and the parameters we used in the other experiments are shown in Table 4.4.

4.4 Implementation

In this section we describe some considerations of implementing LBMPC for on-board use on the
quadrotor. The QP optimization central to the LBMPC technique can be numerically solved using a

37

Chapter 4 Learning-Based MPC Control

Symbol ∈ Value Description

K̂ R10×5

1.35 0.0031 0 0 0
18 0.2453 0 0 0
0 1.1236 0 0 0
0 16.8285 0 0 0
0 0 1.35 0.0031 0
0 0 18 0.2453 0
0 0 0 1.1236 0
0 0 0 16.8285 0
0 0 0 0 0.3
0 0 0 0 7.3

innovation feedback gain

in state update

Ξ R5×5 diag {0.01, 0.01, 0.01, 0.01, 0.0075} covariance matrix of
measurement noise

δ R>0 10−12 tuning parameter
β̄ R12

(0.0899, 0.0488, 0.0496, 0.0899, 0.0488, 0.0496,

0.0003, 0.025, 0.025, 0.025, 0.0003)T

maximum values of
components of parameter

vector β

β R12 −β̄ (except for
β7 = −10β̄7)

minimum values of
components of parameter

vector β
P2(0) R10×12 010×12 initial cross-covariance

matrix between state and
parameter estimates

P3(0) R12×12 blkdiag {PI , PII} where
PI = 10−3 ·

diag {0.1798, 0.1953, 0.0992,
0.1798, 0.1953, 0.0992, 0.0262},

PII = 10−7 ·
diag {0.25, 0.25, 0.25, 0.25, 0.0031}

initial covariance matrix
of parameter estimates

Υ R12×12 0.1P3(0) covariance matrix of
parameter noise

Table 4.1: Dual EKF design parameter values

variety of algorithms. Recent so-called “fast MPC” techniques Ferreau, Bock, and Diehl (2008); Wang
and Boyd (2010); Zeilinger, Jones, and Morari (2011) seek to leverage this sparsity. In Chapter 5 we
explore this direction, but in the present chapter we describe results we have obtained using LSSOL
(Gill et al., 1986). LSSOL is a dense, two-phase active-set solver implemented in FORTRAN 77. Because
LSSOL is a dense solver, reducing the number of decision variables in the optimization problem will
improve computation speed. This can be done by making substitutions for the variables x, ǔ, and x̃.
For the quadrotor model, when using a horizon of N = 15, this leads to a reduction in the number of
decision variables from 363 to 33. For example, the variables x can be removed by noting that

xm+i =
(
A+BK̄

)i
x̂m +

i−1∑
j=0

(
A+BK̄

)i−j
(Bcm+i−1 + k) ,

and similar reductions can be used to remove x̃ and ǔ.

Another opportunity to improve solution speed lies in the form of the optimization. LSSOL can solve
the problem when it is formulated as a constrained least squares problem (in the LSSOL documentation

38

4.5 Experimental Results

Symbol(s) Value Description, units
N 15 prediction horizon
δt 0.025 discretization timestep [s]
R diag{8,8,0.8} input cost weights (for QP cost function and nominal

feedback gain computation)
R̄ 12.5 ·RLQR input cost weights (for terminal set feedback gain

computation)
(x1, x2, x3) (−2,−3,−3) state constraints: minimum position [m]
(x̄1, x̄2, x̄3) (2, 3, 3) state constraints: maximum position [m]
(¯̇x1, ¯̇x2, ¯̇x3) (10, 10, 5) state constraints: maximum velocity [m/s](¯|θ|1, ¯|θ|2

) (
π
2 ,

π
2

)
state constraints: maximum absolute pitch, roll angle

[rad](
¯̇
θ1,

¯̇
θ2

)
(4π, 4π) state constraints: maximum absolute pitch, roll angle

rate [rad/s]
(ū1, ū2, ū3)

(
35 π

180 , 35 π
180 , 18

)
input constraints: maximum commanded pitch, roll

angle; max. thrust [rad, rad, N]
(u1, u2, u3)

(
−35 π

180 ,−35 π
180 , 0

)
input constraints: minimum commanded pitch, roll

angle; min. thrust [rad, rad, N]

x̄D

(0.01, 0.1, 0.01, 0.1, 0.01,

0.01, 0.1, 0.01, 0.1, 0.01) state uncertainty (used to derive oracle bounding
polytope D) [m, m/s, rad, rad/s, m, m/s, rad, rad/s,

m, m/s]

Table 4.2: LBMPC parameters (common across all experiments)

this is termed a problem of type LS1)

min
µ
‖W1µ− v1‖22

s.t.bL ≤ Uµ ≤ bU .

Empirical tests show that this formulation requires 2/3 of the computation time on the on-board
computer of the quadrotor as compared to solving the standard formulation of a QP.

4.5 Experimental Results

In this section, we describe the results of several experiments that illustrate different aspects of the
system performance, with particular emphasis on the benefits of LBMPC over standard linear MPC. We
refer readers to Appendix A for details on our quadrotor testbed.

First, we describe how LBMPC is able to learn updates to the model that can be directly related to a
known aerodynamic phenomenon (the ground effect). We then show how LBMPC can improve the
transient response characteristics, relative to standard linear MPC. Next, we describe an experiment in
which the learning was deliberately poorly tuned to illustrate robustness to ‘mis-learning’. Finally, to
demonstrate the use of LBMPC for fast and accurate control in the context of an overall robotic task, we
control the quadrotor using LBMPC to catch balls that are tossed by hand.

39

Chapter 4 Learning-Based MPC Control

Symbol(s) Value Description, units
Q diag{20,1,0.01,0.01,20,1,0.01,0.01,20,1} state cost weights (for QP cost function and nominal

and terminal set feedback gain computations)

K −

1.4939 0 0
1.0482 0 0
0.3444 0 0
0.1101 0 0

0 1.4939 0
0 1.0482 0
0 0.3444 0
0 0.1101 0
0 0 4.8305
0 0 3.8689

 nominal feedback policy gain

K̄ −

0.4352 0 0
0.4860 0 0
0.1164 0 0
0.0537 0 0

0 0.4352 0
0 0.4860 0
0 0.1164 0
0 0.0537 0
0 0 1.3893
0 0 2.0164

 feedback gain for terminal set computation

P 103

1.0735 0.2001 0.1172 0.0090 0 0 0 0 0 0
0.2001 0.0614 0.0370 0.0032 0 0 0 0 0 0
0.1172 0.0370 0.0247 0.0019 0 0 0 0 0 0
0.0090 0.0032 0.0019 0.0003 0 0 0 0 0 0

0 0 0 0 1.0735 0.2001 0.1172 0.0090 0 0
0 0 0 0 0.2001 0.0614 0.0370 0.0032 0 0
0 0 0 0 0.1172 0.0370 0.0247 0.0019 0 0
0 0 0 0 0.0090 0.0032 0.0019 0.0003 0 0
0 0 0 0 0 0 0 0 1.0113 0.1618
0 0 0 0 0 0 0 0 0.1618 0.0465

terminal cost weight in QP
Table 4.3: LBMPC parameters (ball catching experiment)

4.5.1 Learning the ground effect

The ground effect is a well known aerodynamic effect in which the vehicle is subject to additional lift
when in the vicinity of the ground. In helicopters, ground effect typically has a non-negligible impact on
lift force when the main rotor is within 2 rotor diameters of the ground (Leishman, 2006). This effect
has also been noted in other quadrotors (Waslander et al., 2005; Bouabdallah and Siegwart, 2007;
Guenard, Hamel, and Eck, 2006).

In this experiment, the quadrotor was commanded to hover at a specified height, out of the ground
effect, and after some time (at approx. 249 s on the plot), the altitude command was changed to
correspond to a ground clearance of 3 cm. At this height, the plane of the rotors is approximately 0.19
m from ground, or about 3/4 of one rotor diameter. In the parametrization used, β7 is the learned
change in the input mapping for the thrust input, with the nominal value being the (10, 3) entry of B.
As shown in Fig. Fig.4.2, the parameter estimate quickly (within approximately 1 s) adjusts to reflect an
increase in the total thrust per unit thrust command (ratio of β7 to B10,3). A clear increase in effective
thrust per input thrust is seen when the quadrotor is in the vicinity of the ground; approximately 6%
more thrust per unit command is observed. When the command is returned to the original value, β7
reverts correspondingly, within about 2 s.

For the same experiment but with standard linear MPC (nominal model only, no learning), the quadrotor
is not able to hover at the commanded distance above the ground, because the actual effective thrust is
significantly greater than what the nominal model predicts. Thus, when flying with standard linear
MPC, it is not possible to perform a “soft landing”—one has to manually cut power to the propellers
and let the quadrotor fall the remaining distance.

4.5.2 Decreased overshoot in step response

In this experiment, we investigated the effects of LBMPC on the transient response of the quadrotor
to changes in hover setpoint. The quadrotor was commanded to initially hover at x1 = −1 m. The
setpoint was repeatedly changed to x1 = 1 m and then back to x1 = −1 m after a delay of 3.5 s.
We performed this test with both linear MPC (using only the nominal model) and with LBMPC. Fig.
Fig.4.3 shows a comparison of the x1-axis position of the quadrotor during this maneuver between

40

4.5 Experimental Results

Symbol(s) Value Description, units
Q diag{60,1,0.01,0.01,60,1,0.01,0.01,60,1} state cost weights (for QP cost function and nominal

and terminal set feedback gain computations)

K −

2.5490 0 0
1.4175 0 0
0.5319 0 0
0.1384 0 0

0 2.5490 0
0 1.4175 0
0 0.5319 0
0 0.1384 0
0 0 8.2824
0 0 4.9807

 nominal feedback policy gain

K̄ −

0.7475 0 0
0.6541 0 0
0.1771 0 0
0.0698 0 0

0 0.7475 0
0 0.6541 0
0 0.1771 0
0 0.0698 0
0 0 2.3930
0 0 2.6330

 feedback gain for terminal set computation

P

450.9 97.84 56.11 5.204 0 0 0 0 0 0
97.84 39.72 23.04 2.372 0 0 0 0 0 0
56.11 23.04 15.77 1.255 0 0 0 0 0 0
5.204 2.372 1.255 0.2299 0 0 0 0 0 0

0 0 0 0 450.9 97.84 56.11 5.204 0 0
0 0 0 0 97.84 39.72 23.04 2.372 0 0
0 0 0 0 56.11 23.04 15.77 1.255 0 0
0 0 0 0 5.204 2.372 1.255 0.2299 0 0
0 0 0 0 0 0 0 0 455.6 93.73
0 0 0 0 0 0 0 0 93.73 37.65

terminal cost weight in QP

Table 4.4: LBMPC parameters (experiments other than ball catching)

240 245 250 255 260 265 270 275 280

−2

0

2

4

6

8

Time [s]

β
7
/B

1
0
,3

 (
%

)

Variation of parameter β
7
 with ground effect

out of ground effect out of ground effect

in ground effect

Figure 4.2: Variation of thrust input mapping (B +H)10,3/B10,3 vs. time.

linear MPC and LBMPC. The LBMPC response exhibits considerably less overshoot (62% less in the
x1 = −1 m maneuver shown in Fig. Fig.4.3) than the linear MPC response. In addition, we observed
that the LBMPC response characteristics would improve with repeated maneuvers; this is expected
given that the model parameters continue to be refined with each maneuver. We also observed a
greater decrease in overshoot when successive step maneuvers were more closely spaced in time. This
reflects the fact that the parameter adjustments learned during the transient flight are important in
improving the stopping characteristics, and it suggests that a possible avenue for improvement is to
introduce a velocity-dependent drag term in the dynamics model. This example demonstrates the type
of performance improvement that is possible with LBMPC and a well-behaved oracle.

4.5.3 Robustness to “incorrect learning”

In this experiment, we deliberately caused the dual EKF to be prone to mis-estimate the model
parameters by grossly increasing the noise process covariance Υ. We allowed the quadrotor to hover at
a height above the ground of 0.85 m using linear MPC (without learning updates; F,H, z all zero), and
enabled learning. After some maneuvering, the parameter estimates diverged, hitting their bounding
limits. At this time, the quadrotor’s altitude dropped sharply, but the quadrotor did not contact the

41

Chapter 4 Learning-Based MPC Control

0 0.5 1 1.5 2 2.5 3

−1

0

1

time [s]

x
1
 p

o
s
it

io
n

 [
m

]
Step input comparison (detail)

cmd

linear MPC

LBMPC

Figure 4.3: Step response for linear MPC with nominal model and LBMPC with learned model. The
reference command is the dotted blue line. The LBMPC response here is from the 4th step command
after enabling learning.

ground, and ended up in a stable hover approximately 0.1 above the ground (see Fig.4.4). The
optimization found a feasible solution throughout, and this demonstrates that even when the oracle
degrades the learned model with respect to the nominal one, the system can remain safe and stable.

263 264 265 266 267 268 269 270
0

0.05

0.1

Bad learning − ground clearance

Time [s]

C
le

a
ra

n
c

e
 [

m
]

Figure 4.4: Safety is maintained even if parameter learning goes awry.

4.5.4 Precise maneuvering: ball catching

In this experiment, we tested the dynamic performance of the quadrotor using LBMPC on the challenging
robotic demonstration task of catching a ball thrown by a human, before it hits the ground, when the
ball has an a priori unknown trajectory. The task is similar to that in some recent work at ETH Zürich
(Muller, Lupashin, and D’Andrea, 2011; Hehn and Andrea, 2012), although the control approach here
is considerably different.

We equipped the quadrotor with a simple plastic cup, with a circular opening of radius 0.065 m, directly
above the main body. The quadrotor is programmed to hover in place at a fixed altitude of 0.5 m above
the ground. A command is issued to ready the quadrotor to catch the ball. Next, the ball, which has a
mass of 6 g and a diameter of 33 mm, is tossed towards the robot by hand.

We designed an estimation and prediction scheme to estimate the ball’s state (taken as its position and
velocity in the inertial frame) and use this estimate to predict where the ball’s trajectory will intercept
the horizontal plane in which the quadrotor is hovering, to derive a position to command the quadrotor
to. Details of the ball model, state estimation and prediction can be found in Appendix B.

The ball catching task is challenging because the quadrotor must arrive quickly and accurately at the
location where the ball is predicted to be. Given the constraints of the experiment room, even for a ball
thrown high the quadrotor has roughly 1 second from the time that the initial x̂c are available to when

42

4.5 Experimental Results

the ball actually crosses the plane. The estimates of xc must be accurate enough from the beginning
that that the quadrotor is not commanded initially in the wrong direction, thus losing ground when the
estimate later improves. Furthermore, when the quadrotor is accelerating, the vehicle is tilted and so
the effective “catch zone” for the ball is reduced compared to when the quadrotor is stationary; this
favors an approach in which the quadrotor can reach the destination and stabilize quickly.

Fig.4.5 shows data from a typical experiment. We were able to achieve a very high rate of successful
catches–over 90%. Fig.4.6 is a photograph taken during one experiment, when the quadrotor is about
to catch a ball thrown by a human. The vast majority of misses were also very close, within one or
two ball diameters of the edge of the cup. We elected not to perform a more well-controlled study of
success rates because this would require developing a repeatable ball-throwing device. At this stage, we
believe that it would be more interesting to investigate a more detailed nonlinear model for the ball’s
dynamics. Indeed we observed the effects of the Magnus force, which caused a noticeable curvature in
the ball’s path. We attempted to throw the ball in a similar fashion each time, but some variable amount
of spin (usually topspin from the underhanded throw) is induced on each throw. Since a number
of important details differ from those in the aforementioned related work at ETH Zürich, a direct
quantitative comparison would not be meaningful—however we note that qualitatively the success
rates of our approach and those reported in (Muller, Lupashin, and D’Andrea, 2011) on their respective
tasks are similar.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x
2
 position [m]

−
x

3
 p

o
s

it
io

n
 [

m
]

ball (meas)

ball (est)

ball (pred)

quadrotor (meas)

Figure 4.5: Measurements and EKF estimates of the ball’s position throughout its trajectory, the
estimated final position of the ball, and the trajectory of the quadrotor body frame FB are shown.

43

Chapter 4 Learning-Based MPC Control

Figure 4.6: “Ball catching” experiment. The quadrotor, controlled using LBMPC, is about to catch
a ball. Video from the experiments can be viewed on-line: http://hybrid.eecs.berkeley.edu/
~bouffard/research.html.

4.6 Conclusions

We have described the design and implementation of a modified LBMPC controller for a quadrotor
helicopter. The controller we implemented runs entirely on-board the quadrotor. We have shown the
results of experiments that demonstrate some of the performance improvements that LBMPC can enable,
as compared to standard MPC. These include robustness to mis-learning, improved dynamic response,
and ability to learn physically interpretable effects (ground effect). We also showed the successful use of
the quadrotor with the on-board LBMPC controller in a challenging robotic task in which the quadrotor
catches balls thrown by a human.

Future work will examine whether the special structure of the MPC problem could enable improvements
in computation time. Some initial work in this direction is described in Chapter 5. Also, the issues
inherent in computation of the invariant set with polytopes which led to our current implementation
using an overapproximation of the set should be addressed. One possible avenue would be to employ
and ellipsoidal underapproximation and solve the resulting quadratically-constrained quadratic program
(QCQP) (Zeilinger, 2011).

44

Chapter 5

Exploiting Structure for Fast LBMPC
Solutions

The content of this chapter has in part been included in a conference submission currently under review
(Zhang et al., 2013).

5.1 Introduction

A variety of methods exists for solving a QP-MPC. Explicit MPC (Bemporad et al., 2002; Tondel, Johansen,
and Bemporad, 2001; Mariethoz, Domahidi, and Morari, 2009) computes a lookup table that gives
the optimal control as a function of the initial states. It is well-suited for situations where the QP-MPC
is time-invariant. However, the number of entries in the table can grow exponentially with horizon,
input, and state dimensions. An alternative approach is to use a QP optimization solver (e.g., (Gill et al.,
1986; Gill, Murray, and Saunders, 2002; Ferreau, Bock, and Diehl, 2008)) at each time step. Specialized
solvers that can exploit the sparsity of QP-MPC have computational complexity that scales linearly in
the prediction horizon of the QP-MPC (Wang and Boyd, 2010; Rao, Wright, and Rawlings, 1998), as
opposed to non-sparse solvers that scale cubicly. Other approaches include automatic code generation
using problem-tailored solvers (Mattingley and Boyd, 2012; Domahidi et al., 2012), and combining
explicit and online MPC (Zeilinger, Jones, and Morari, 2011).

If the system dynamics are linear, the state and input constraints are polyhedral, the cost function is
quadratic, and the statistical method provides linear model updates, then LBMPC can be described
by a QP (QP-LBMPC). These conditions are common in many engineering problems. This paper
describes an optimization solver that is specific to such QP-LBMPC problems. We show in (Zhang
et al., 2013) that QP-LBMPC has sparsity structure similar to QP-MPC. Hence, sparse solvers can be
designed that computationally scale well when solving LBMPC. The proposed primal-dual infeasible
start interior point method (PD IIPM) based on Mehrotra’s predictor-corrector scheme (Mehrotra,
1992) was implemented in C++, and named LBmpcIPM. LBmpcIPM exploits the sparsity structure of
QP-LBMPC, and computationally scales well in the length of the prediction horizon. Theoretical results
in (Zhang et al., 2013) are supported by simulations that empirically confirm that the solving time of
our solver does indeed scale linearly in the prediction horizon. Furthermore, we present experimental
results on a quadrotor helicopter testbed, where we show the robustness and scaling properties of the
solver.

In this chapter we will not go into any detail on the PD IIPM scheme itself or implementation details
thereof but rather will focus on the simulation and experimental results since the author of this report
contributed more directly to those.

5.2 Experimental and simulation results

In this section, we empirically compare LBmpcIPM with two dense active set solvers (LSSOL v1.05-4
and qpOASES v3.0beta) (Gill et al., 1986; Ferreau, Bock, and Diehl, 2008). We begin with simulations

45

Chapter 5 Exploiting Structure for Fast LBMPC Solutions

on a model of a quadrotor helicopter. Simulations show that the computation time of the sparse PD
IIPM does indeed scale linearly in the prediction horizon N . This is in contrast to the dense active set
solvers whose computation times are well-known (Wang and Boyd, 2010; Rao, Wright, and Rawlings,
1998) to scale cubicly in the horizon length N . These simulations are followed by experiments on
a quadrotor helicopter, in which we empirically compare three solvers. We ran these solvers in real
time using the computer on-board the quadrotor helicopter which is slow in comparison to a desktop
computer.

The quadrotor model that we used is the same one described previously in Sec.4.2.

5.2.1 Computational scaling in horizon length

We conducted a simulation in which the quadrotor was commanded to move from a height of 2 m
above the ground to a height of 1 m. The reason that LBMPC can be useful in similar scenarios is that
complex aerodynamic behavior leads to a change in the thrust of the helicopter when it approaches the
ground. LBMPC allows the designer to explicitly specify that the model can change in this manner and
then leverage statistical tools to learn and compensate for the effect of this phenomenon, as we showed
earlier in Chapter 4. We used nonzero values of F (β), H(β) (see 4.17) to represent learning that has
taken place and has identified changes in the helicopter physics.

We ran the simulations on three different computers of varying computational power and architecture.
The horizon size N was ranged from 5 steps to 240 steps, which represents 0.125 s to 6 s of horizon
time because of the 0.025 s sampling period of the model. Specifications for the three computers are
shown in Table 5.1. The third computer is a small form factor computer-on-module (CoM) which runs
onboard the quadrotors used in our laboratory testbed (see Sec.A.1).

Table 5.2 lists the simulation results, and Fig.5.1 shows the same information in plot form, with linear
trendlines. For a given CPU the solution time is strongly linear in the prediction horizon N . This is what
is expected for a sparse interior point solver that exploits the special structure of an MPC problem, and
stands in contrast to dense solvers that scale cubicly. When the helicopter is in flight, its processor must
handle additional overhead due to processes like measurement communication and file storage. And so
the solve times reported for the Atom CPU represent a lower bound on the solve times for when the
helicopter is in flight.

Computer Model CPU Cache RAM Linux
i7 Lenovo T410 laptop 2.67 GHz 4 MB 8 GB 64-bit

Core2 Dell Precision 390 desktop 2.4 GHz 4 MB 2 GB 32-bit
Atom AscTec Atomboard 1.6 GHz 512 kB 1 GB 32-bit
Table 5.1: Different computers on which we tested the LBmpcIPM solver.

N i7 Core2 Atom
5 1.1 2.0 9.8
10 2.2 4.0 20.1
15 3.2 6.0 30.3
30 6.3 12.1 60.7
60 12.4 24.5 121.9

120 26.0 49.9 245.7
240 54.1 105.4 491.7

Table 5.2: Average time [ms] to solve problem for one timestep.

46

5.2 Experimental and simulation results
Nonzero Oracle

Page 1

0 50 100 150 200 250 300
0.0

100.0

200.0

300.0

400.0

500.0

600.0
Timing - Combined Model

Laptop (Core i7, 2.67 GHz)

Linear (Laptop (Core i7, 2.67 GHz))

Desktop (Core2, 2.4 GHz)

Linear (Desktop (Core2, 2.4 GHz))

CoM (Atom Z530, 1.6 GHz)

Linear (CoM (Atom Z530, 1.6 GHz))

N

S
o

lv
in

g
 ti

m
e

 p
e

r
tim

e
s

te
p

 [m
s

]

0 50 100 150 200 250 300
0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0
Timing - Decoupled Model

Laptop (Core i7, 2.67 GHz)

Linear (Laptop (Core i7, 2.67 GHz))

Desktop (Core2, 2.4 GHz)

Linear (Desktop (Core2, 2.4 GHz))

CoM (Atom Z530, 1.6 GHz)

Linear (CoM (Atom Z530, 1.6 GHz))

N

S
o

lv
in

g
 ti

m
e

 p
e

r
tim

e
s

te
p

 [m
s

]

Figure 5.1: Plot of average solving time [ms] vs. horizon length N . Trendlines emphasize the strong
linearity of the solving time.

5.2.2 Experimental comparison

LBMPC controllers implemented using LBmpcIPM, LSSOL, and qpOASES were compared on a quadrotor
helicopter testbed. This experiment is an interesting comparison of the different solvers because (i) the
processor onboard the helicopter is slow in comparison to a desktop computer, (ii) the optimization
problem to compute the control must be computed within 25 ms to enable the real time control, and
(iii) the quadrotor has constraints placed on its state and inputs that correspond to physical constraints
such as not crashing into the ground. We used a horizon of N = 5 because this was the largest horizon
in which all the solvers could reliably terminate their computations during the 25 ms sampling period
for computing the control value. Note that this is in contrast to the horizon of N = 15 that was used
with the LSSOL solver in previous experiments applying LBMPC to the quadrotor (Chapter 4). This
means that the benefits of the linearly-scaling computational complexity are not apparent in these
experiments, nor are the benefits of a longer MPC horizon. However, it is worth noting that the current
on-board quadrotor computer (which dates from 2009) could be replaced with another of similar size
and power requirements. It would be compatible with our quadrotor platform (Bachrach et al., 2012),
yet with about an order of magnitude better performance (Meier et al., 2012), which we can predict
should enable, for LBmpcIPM, horizons around N = 30. An experiment was conducted in which the
helicopter was commanded to, starting from a stable hover condition, go left 1 m and then go right 1 m.
This was repeated 10 times in quick succession. The same learning described in Chapter 4 was enabled
for this experiment.

A plot of a representative step input in which the quadrotor was commanded to go from left to right is
shown in Fig.5.2. The position of the helicopter when using the LSSOL solver is shown in solid blue,
the difference between the trajectories of the LSSOL and LBmpcIPM solvers is shown in dashed red,
and the difference between the trajectories of the LSSOL and qpOASES solvers is shown in dash-dotted

47

Chapter 5 Exploiting Structure for Fast LBMPC Solutions

green. We used the trajectory of the LSSOL solver as the reference trajectory, because this was the
solver used for our previous experiments in Chapter 4. As can be seen in the plots, the difference in
trajectories is within 6.5 cm for LBmpcIPM and 9.8 cm for qpOASES. These differences are within a
range that would be expected even between runs of the same trajectory using the same solver due to
complex aerodynamic fluctuations that occur during a flight. They indicate that the different solvers are
giving the same performance.

0 1 2 3 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

P
os

iti
on

 o
r

P
os

iti
on

 D
iff

er
en

ce
 (

m
)

Figure 5.2: The step response trajectory of the quadrotor helicopter flown using LBMPC solved with
LSSOL (solid blue), the difference between the trajectories of the helicopter when flown with the
LSSOL versus the LBmpcIPM solver (dashed red), and the difference between the trajectories of the
helicopter when flown with the LSSOL versus the qpOASES solver (dash-dotted green).

Histograms that show the empirical densities of the solve times for the three solvers can be seen in
Fig.5.3. The two dense active set solvers have a lower variance of solve times, and this lower variance
is important because it means that the solver is able to finish its computations under the time limit
imposed by the 25 ms sampling period. In contrast, the LBmpcIPM method has a higher variance and
so the solve times do exceed the 25 ms limit a small percentage of the time. Lastly, we note that the
LBmpcIPM solver is able to provide good quality solutions. The norm of the primal residue is 1.4× 10−7

on average, with a minimum of 3.5× 10−11 and a maximum of 4.8× 10−6. Similarly, the norm of the
dual residue is 3.1× 10−8 on average, with a minimum of 1.7× 10−11 and a maximum of 1.8× 10−6.

5.3 Conclusions

We have shown that a sparse PD IIPM can efficiently solve QP-LBMPC problems. We carried out both
numerical simulations and experiments onboard a quadrator helicopter. Results from these experiments
and simulations indicate QP-LBMPC problems can be solved robustly, and that the computational
complexity scales linearly in the prediction horizon, making QP-LBMPC attractive for systems with large
horizons. The LBMPC problem has additional structure because of the similarity between the dynamics
of the learned (with states x̃) and nominal model (with states x̄), and this structure is not typical in
linear MPC problems. It may be possible to leverage this structure to provide improvements in the solve
time.

48

5.3 Conclusions

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Solve Time (ms)

E
m

pi
ric

al
 D

en
si

ty

(a) LSSOL solver

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Solve Time (ms)

E
m

pi
ric

al
 D

en
si

ty

(b) qpOASES solver

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Solve Time (ms)

E
m

pi
ric

al
 D

en
si

ty

(c) LBmpcIPM solver

Figure 5.3: Empirical densities of solve times on quadrotor helicopter for different optimization
algorithms are shown. The vertical dashed red line at 25ms indicates the threshold beyond which
greater solve times are too slow to be able to provide real time control.

49

Chapter 5 Exploiting Structure for Fast LBMPC Solutions

50

Chapter 6

Conclusions

6.1 Summary

In this report we have described how we applied two types of MPC, explicit MPC and learning based
MPC (LBMPC), to control of the flight of a quadrotor helicopter.

We designed controllers based on the explicit MPC technique, which leverages the special form of MPC
control laws to effectively pre-compute the solutions to the MPC optimization problem, such that on-line
controller implementation is effectively little more than a look-up table and can run very quickly even
given the limited computing capability on-board the quadrotor.

We also designed an LBMPC-based controller. LBMPC allows the advantages of the MPC technique, par-
ticularly the direct encoding of design requirements as cost function and constraints in an optimization
problem, to be combined with the potential performance benefits that can be obtained by applying
statistical learning techniques on-line. The latter techniques, used alone, could result in a compromise
of safety properties but LBMPC reconciles this by treating learning as an update to a given nominal
model for which uncertainty bounds are known. As a result, even in the case in which the learning
fails, safety (as encoded in the MPC constraints) is maintained. We described in detail our design
and implementation of an LBMPC controller for the quadrotor, and the experiments we performed to
demonstrate its effectiveness.

For both the explicit MPC and LBMPC controllers, a model of the quadrotor’s dynamics is required.
We have described our development of such a model, based on a linearized (near hover conditions)
double-integrator, and an empirical identification of the parameters of this model. In the explicit MPC
controller, this model is taken effectively as a truth model, though the control synthesis does allow for
‘state noise’, to represent modeling uncertainties. In the LBMPC controller this model represents the
‘nominal’ model.

Finally, we have shown that a sparse PD IIPM can efficiently solve QP-LBMPC problems, using a
new solver developed specifically for such problems. We carried out both numerical simulations and
experiments onboard a quadrator helicopter. Results from these experiments and simulations indicate
QP-LBMPC problems can be solved robustly, and that the computational complexity scales linearly in
the prediction horizon, making QP-LBMPC attractive for systems with large horizons.

6.2 Future Work

There are several potential directions for future investigations, in terms of the modeling and system
identification, explicit MPC controllers, and LBMPC controllers.

The modeling we performed is fairly rudimentary and limits the regime of operation of the quadrotor. It
could not be used, for example, for extremely aggressive or aerobatic maneuvers. This would require
either a nonlinear model, or a series of linear models based on linearized operating points. Nonlinear
models could include terms to account for the ground effect and other aerodynamic factors (Hoffmann,
Waslander, and Tomlin, 2009).

51

Chapter 6 Conclusions

In part because of the slowness of the design process owing to the computation time for even relatively
short horizon explicit MPC controllers, we were not able to iterate many times on the tuning of these
controllers. We therefore suspect that our tuning of these controllers could be improved. They would of
course also benefit from any improvement in system identification.

Combining ideas from switched PWA control of quadrotors (Alexis, Nikolakopoulos, and Tzes, 2011)
with LBMPC would one possible natural direction. Note that for the LBMPC technique the optimiza-
tion problem must be solved on-line because of the oracle updates to the cost function–an explicit
(precomputed) scheme such at that used in (Alexis, Nikolakopoulos, and Tzes, 2011) would not be
applicable.

The LBMPC problem has additional structure because of the similarity between the dynamics of the
learned (with states x̃) and nominal model (with states x̄), and this structure is not typical in linear
MPC problems. It may be possible to leverage this structure to provide improvements in the solve time
beyond those already obtained (at least for longer horizon lengths) with our sparse PD IIPM solver.

Finally, since we were not able to compute the maximal output admissable disturbance invariant set
because of the dimensionality of our state space and instead used an overapproximation, the safety
properties of LBMPC were verified empirically but not theoretically. Obtaining theoretical guarantees
would require an underapproximation of this set, which may require the use of non-polytopic techniques.
For example, we could investigate the use of ellipsoidal approximations; the main difference would be
the requirement to solve a QCQP rather than a QP.

52

Appendix A

Experimental testbed description

A.1 Overview

Our experimental testbed consists of the following major components:

• AscTec Pelican quadrotor helicopter

• Vicon MX motion capture system

• supporting hardware and software

• safety systems

Fig.A.1 shows a diagram of our experimental testbed, including the main components and their data
flow interconnections. We describe each major system component in the following sections.

A.2 Pelican quadrotor

The main element of the system is a quadrotor UAV, based on the popular Pelican vehicle from Ascending
Technologies (AscTec for short)1. Fig.A.2 shows an image of a Pelican quadrotor equipped with several
additional sensors; in the work in this report, we used no additional on-board sensors as our focus
was on modeling and control. Several research groups are now using this vehicle for various types of
experiments. Our Pelican is equipped with the optional on-board computer which includes a 1.6 GHz
Intel Atom N270 CPU, 1 GB of RAM, an 8 GB solid state (micro-SD card) disk, and wi-fi communications.
The MPC controllers described in this report run as Robot Operating System (ROS, (2011)) “nodelets”
within a system based on a software framework for quadrotor operations developed in the Hybrid
Systems Lab (Bouffard, 2011).

A.2.1 Control System

The Pelican is supplied with a proprietary controller (the “AutoPilot”) for attitude angles and thrust.
According to AscTec, this controller runs at 1 kHz on one of two ARM7 chips (the “low-level” (LL) chip)
located on the AutoPilot board. There is another “high-level” (HL) ARM7 chip that does not figure in
the configuration used in these experiments–we are effectively using it to forward commands to, and
telemetry from, the LL chip2. Our MPC controller operates on the Atom CPU, and communicates with
the LL controller over a serial port link, via the HL controller. The LL controller is given setpoints for
roll, pitch, yaw rate, and thrust over this link at 40 Hz. The same link also provides telemetry data at
various rates.

1http://www.asctec.de/
2For this we currently use the asctec_mav_framework ROS stack (http://www.ros.org/wiki/asctec_mav_framework);

in prior versions we communicated directly with the LL controller using the asctec_drivers stack
(http://www.ros.org/wiki/asctec_drivers).

53

Appendix A Experimental testbed description

Atom CPUAtom CPU

AutoPilotAutoPilot

HLHLLLLL

IMUIMU

Ground Station
PC

Ground Station
PC

Vicon
Gateway PC

Vicon
Gateway PC

Vicon
Nexus PC

Vicon
Nexus PC

MX GiganetMX Giganet

Camera 1Camera 1

Camera 12Camera 12

ESC 1ESC 1 ESC 4ESC 4

WiFi APWiFi AP

...

On-board
Quadrotor

... motors

Figure A.1: High-level system diagram showing the main components involved in the control of the
quadrotor in our experimental setup. The items within the dashed line are all on-board the quadrotor
as it flies. Our controllers run on the Atom CPU.

Note that while the Pelican is provided with a 3D magnetometer (3DMAG) which can be used by the
AutoPilot to derive absolute yaw angle, in practice for indoor operation magnetic sources such as re-bar
cause the 3DMAG to have significant drift. By disconnecting the 3DMAG, the AutoPilot defaults to
controlling only the yaw rate, directly sensed by its yaw gyro. Over time, this can result in yaw position
drift, but this is corrected in our setup with a linear (PID) controller using Vicon data to measure the
current yaw and estimate yaw rate. For the purposes of this project we assume this controller maintains
yaw at a fixed angle–in practice the controller indeed keeps yaw very steady.

A.3 Motion capture system

Experiments are conducted in a laboratory environment equipped with a Vicon3 MX motion capture
system. The system consists of an array of 12 Vicon T40 cameras arranged on custom rails near the
ceiling of a room dedicated to aerial robotics experiments4, two Vicon Giganet MX multiplexing units, a
control PC running Vicon Nexus application software, and a gateway PC running software that provides
the Vicon based measurements to the rest of the system.

3http://www.vicon.com
4The explicit MPC work described in Chapter 3 was performed using an earlier incarnation of the system; at that time only 8

cameras were used, covering a smaller overall flight volume in a room that served as both laboratory and graduate student
office space.

54

A.4 Safety systems

Figure A.2: Ascending Technologies Pelican quadrotor (photo courtesy Ascending Technologies)

The Vicon system provides the full rigid-body position and orientation of multiple rigid bodies and/or
reflective markers at a rate of 120 Hz. To use these measurements as input to our estimation algorithms,
we wrote software5 employing the Vicon DataStream software development kit (SDK) that provided the
measurements to the software on-board the quadrotor via a ROS topic.

We use this same system to obtain measurements of the 3D position of the ball in the “ball catching”
experiment.

A.4 Safety systems

The physical safety of researchers is always of greatest importance in any experimental work, and
experiments with flying robots are no exception. We take several common-sense precautions when
flying the quadrotors in the indoor lab:

• Floor-to-ceiling netting separates the area where the researchers control the quadrotor, and any
spectators are required to remain behind the netting during flight experiments. Researchers also
stay behind this netting during experiments unless necessary for the experiment at hand (e.g. the
“ball catching” experiment described in this report).

• If a researcher needs to be in the flight volume during experiments, s/he wears heavy gloves to
protect hands.

• Everyone (both researchers and any spectators present) in the flying lab wears eye protection.

• Whenever flight experiments are underway, a sign is posted on the outside of the flying lab door
which clearly indicates this fact and asks visitors to knock before entering (the door opens to the
flying-volume side of the protective net).

• Whenever the quadrotor is “live” (rotors engaged), a researcher is ready with a remote control to
take over flight of the quadrotor if need be.

Besides these common-sense, low-tech safety precautions we are also in the process of adding a more
sophisticated one. We have discovered that the Pelican AutoPilot has a failure mode in which it may not
be possible to issue a remote command to shut down the rotors and this has on occasion required us to

5Our original software was called vicon_mocap and released as BSD-licensed open source
(http://www.ros.org/wiki/vicon_mocap). It was later forked by researchers at ETH Zürich, extended to allow mul-
tiple bodies and renamed vicon_bridge (http://www.ros.org/wiki/vicon_bridge). Subsequently we adopted use of this
forked version.

55

Appendix A Experimental testbed description

manually disconnect the battery while the rotors were running at maximum speed, a dangerous prospect
to say the least. We are thus testing a remote “kill switch” we have developed which incorporates a
watchdog principle: A receiver unit on the quadrotor allows power to flow from the battery only if it
continuously receives a keep-alive beacon from a transmitter unit. The transmitter unit is also equipped
with a button that allows a researcher to command an immediate power cut at any time.

56

Appendix B

Modeling and estimation for a ball in free
flight

A key part of the ball catching experiment is predicting the ball’s future trajectory based on an estimate
of its current state. To that end, we modeled the ball and used this model in an estimator to predict the
ball trajectory. The following sections describe first the model, and then the estimator used.

B.1 Modeling

The trajectory of the ball in free flight is governed by the action of gravity, drag due to air resistance,
the Magnus effect, buoyancy, and added (or “virtual”) mass (Andersson, 1988; Yingshi et al., 2010).
The Magnus effect induces a force perpendicular to both the velocity and the spin axis of the ball, thus
causing its trajectory to curve. This force appears to have an effect on our trajectory predictions, based
on study of the ball’s trajectory. However, a nonlinear EKF estimate that incorporated the Magnus
effect did not converge fast enough to provide accurate estimates, and subsequently we used a more
straightforward Luenberger observer—which has been proven to converge (Yingshi et al., 2010)—with
a model that neglects Magnus. The buoyancy force and the “added mass” on the other hand, are both
small enough to neglect.

The gravity force is FG = mg ·x3, and drag acts in a direction opposite to that of the ball’s instantaneous
velocity vector V := (ẋb,1, ẋb,2, ẋb,3)

T and has magnitude proportional to the square of the ball’s velocity,
thus FD = − 1

2ρCD ‖V ‖V , where CD is a drag coefficient that is typically determined empirically and ρ
is the density of the air.

Let xb = (xb,1, ẋb,1, xb,2, ẋb,2, xb,3, ẋb,3)T ∈ R6 represent the state (position and velocity) of the ball
expressed in FI . The discrete-time (time step δtb) dynamics update is

x+b = Fb(xb) =

Ab 0 0
0 Ab 0
0 0 Ab

xb +

0
δtbFD,1(xb)

0
δtbFD,2(xb)

δt2b
2 g

δtb (g + FD,3(xb))

 (B.1)

where Ab =
[
1 δtb
0 1

]
, i.e., a discretized double integrator in each axis. Note that we neglect the small

contribution of the drag force to the position update. We measure only the position of the ball; the

57

Appendix B Modeling and estimation for a ball in free flight

x

Figure B.1: Diagram of the ball in flight. The ball’s trajectory is shown by the dashed line. FI is the
inertial frame; (xb,1, xb,2, xb,3)

T is the position vector of the ball in this frame. The ball’s instantaneous
velocity vector V is shown in green; drag FD (blue arrow) acts opposite V and the force of gravity
mbgx3 acts downwards. The height zc represents the altitude at which we attempt to catch the ball
(based on the quadrotor’s altitude), and x̂c is the predicted intersection of the ball’s trajectory and
the plane defined by zc.

output equation is

yb = Cbxb

=

cb 0 0
0 cb 0
0 0 cb

xb
=

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xb.

B.2 Estimation and prediction

B.2.1 State estimation

The ball is covered with reflective tape so that the Vicon system can track it. The measurements of the
ball’s position are fed into a Luenberger observer that uses a nonlinear model incorporating a quadratic
drag term for the state prediction step, and a linear correction step. We initialize the observer’s velocity
estimate using a finite difference estimate from two successive measurements to speed up the observer’s
convergence.

We found that a simple Luenberger observer, with nonlinear state update based on B.1 and linear
corrections

x̂+b = x̂b +Kb (yb − Cbx̂b) ,

performed adequately for the task. Table B.1 shows the values used for the parameters in the ball
model and state estimator. The value of Kb = blkdiag {kb, kb, kb} corresponds blocks kb which are the

58

B.2 Estimation and prediction

gain matrix of a time-invariant Kalman filter for a discrete-time double integrator in each axis. That is,
kb =

(
cTb Xcb +R

)−1
cTb XAb, where X is the solution to the discrete algebraic Riccati equation,

ATb XAb −X −ATb Xcb
(
cTb Xcb +R

)−1
cTb XAb +Q = 0,

and where the weighting matrices were selected as Q = diag {0.0001, 0.25}, R = 0.0001.

Symbol(s) Value Description
ρCD 0.09 Air density times drag coefficient

Kb

0.9488 0 0
25.7982 0 0

0 0.9488 0
0 25.7982 0
0 0 0.9488
0 0 25.7982

 Linear correction gain matrix

Table B.1: Parameters for ball state estimation.

B.2.2 Prediction

Once 20 initial measurements have been processed (0.16 s), the state estimate is used to propagate the
dynamics model forward to estimate the point x̂c where the ball’s trajectory will intersect the plane in
which the quadrotor is hovering. The quadrotor’s reference command is then set to x̂c, and it continues
to track updates to x̂c as these are generated in subsequent timesteps.

59

Appendix B Modeling and estimation for a ball in free flight

60

References

2011. “ROS (Robot Operating System).” http://www.ros.org. Willow Garage.

Abbeel, P., A. Coates, and A. Y. Ng. 2010. “Autonomous Helicopter Aerobatics through Apprenticeship
Learning.” Intl. J. of Robotics Res. 29 (13):1608–1639. URL http://ijr.sagepub.com/cgi/doi/10.
1177/0278364910371999.

Albertini, Francesca and D. D’Alessandro. 2002. “Observability and forward-backward observability of
discrete-time nonlinear systems.” Mathematics of Control, Signals, and Systems 15 (4):275–290. URL
http://www.springerlink.com/index/W2CFGP3GUX3PBU87.pdf.

Alexis, Kostas, George Nikolakopoulos, and Anthony Tzes. 2010a. “Constrained Optimal Attitude
Control of a Quadrotor Helicopter subject to Wind-Gusts : Experimental Studies.” In American Control
Conference (ACC), 2. Baltimore, MD, USA, 4451–4455.

———. 2010b. “Design and experimental verification of a Constrained Finite Time Optimal control
scheme for the attitude control of a Quadrotor Helicopter subject to wind gusts.” In 2010 IEEE
International Conference on Robotics and Automation, 2. IEEE, 1636–1641. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509412.

———. 2011. “Switching model predictive attitude control for a quadrotor helicopter subject
to atmospheric disturbances.” Control Engineering Practice 19 (10):1195–1207. URL http:
//linkinghub.elsevier.com/retrieve/pii/S0967066111001262.

———. 2012. “On Trajectory Tracking Model Predictive Control of an Unmanned Quadrotor Helicopter
Subject to Aerodynamic Disturbances.” Asian Journal of Control :n/a–n/aURL http://doi.wiley.
com/10.1002/asjc.587.

Alexis, Kostas, Christos Papachristos, George Nikolakopoulos, and Anthony Tzes. 2011. “Model predic-
tive quadrotor indoor position control.” In 2011 19th Mediterranean Conference on Control & Automa-
tion (MED). Ieee, 1247–1252. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5983144.

Andersson, Russell L. 1988. A Robot Ping-Pong Player: Experiments in Real-Time Intelligent Control.

Åström, Karl Johan and Björn Wittenmark. 1994. Adaptive Control. Prentice-Hall, 2nd ed.

Aswani, Anil, Patrick Bouffard, and Claire Tomlin. 2012. “Extensions of Learning-Based Model Predictive
Control for Real-Time Application to a Quadrotor Helicopter.” In American Control Conference (ACC).
Montreal, Canada.

Aswani, Anil, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin. 2012a. “Provably Safe and
Robust Learning-Based Model Predictive Control.” Automatica :(to appear)URL http://arxiv.org/
abs/1107.2487.

Aswani, Anil, Neal Master, Jay Taneja, David Culler, and Claire Tomlin. 2012b. “Re-
ducing Transient and Steady State Electricity Consumption in HVAC Using Learning-
Based Model-Predictive Control.” Proceedings of the IEEE 100 (1):240–253. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5985456http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5985456.

Austen, Ian. 2011. “Libyan Rebels Reportedly Used Tiny Canadian Surveillance Drone.” The New York
Times :A11URL http://www.nytimes.com/2011/08/25/world/africa/25canada.html.

61

References

Bachrach, A., S. Prentice, R. He, P. Henry, a. S. Huang, M. Krainin, D. Maturana, D. Fox, and N. Roy.
2012. “Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-
denied environments.” The International Journal of Robotics Research 31 (11):1320–1343. URL
http://ijr.sagepub.com/cgi/doi/10.1177/0278364912455256.

Bauer, F L and C T Fike. 1960. “Norms and Exclusion Theorems.” Numerische Mathematik 2:137–141.

Bemporad, Alberto, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos. 2002. “The explicit linear
quadratic regulator for constrained systems.” Automatica 38 (1):3–20. URL http://linkinghub.
elsevier.com/retrieve/pii/S0005109801001741.

Borrelli, F, A Bemporad, and M Morari. 2012. Predictive Control for linear and hybrid systems. (in
preparation). URL http://www.mpc.berkeley.edu/mpc-course-material.

Bouabdallah, Samir and Roland Siegwart. 2007. “Full control of a quadrotor.” In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Sys., 1. IEEE, 153–158. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4399042.

Bouffard, P. 2011. “starmac-ros-pkg ROS repository.” http://www.ros.org/wiki/starmac-ros-pkg.

Bouffard, Patrick, Anil Aswani, and Claire Tomlin. 2012. “Learning-Based Model Predictive Control
on a Quadrotor: Onboard Implementation and Experimental Results.” In Proc. IEEE Intl. Conf. on
Robotics and Automation (ICRA). Saint Paul, Minnesota, USA.

Bouffard, Patrick and Cameron Rose. 2011. “Zero-Offset MPC (δu Formulation) for a Quadrotor UAV.”
{(UC Berkeley ME290J Project Report)}.

Boyd, Stephen and Lieven Vandenberghe. 2009. Convex Optimization. Cambridge University Press. URL
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.

Brockers, Roland, Patrick Bouffard, Jeremy Ma, Larry Matthies, and Claire Tomlin. 2011. “Autonomous
landing and ingress of micro-air-vehicles in urban environments based on monocular vision.” In
Proceedings of SPIE, vol. 8031. 803111–803111–12. URL http://link.aip.org/link/?PSISDG/
8031/803111/1http://link.aip.org/link/PSISDG/v8031/i1/p803111/s1&Agg=doi.

Burri, Michael, Janosch Nikolic, Christoph Hurzeler, Gilles Caprari, and Roland Siegwart. 2012. “Aerial
Service Robots for Visual Inspection of Thermal Power Plant Boiler Systems.” In 2nd Intl. Conf. on
Applied Robotics for the Power Industry. Zurich, Switzerland.

Chisci, L, JA Rossiter, and G Zappa. 2001. “Systems with persistent disturbances: predictive control
with restricted constraints.” Automatica 37 (7):1019–1028. URL http://www.sciencedirect.com/
science/article/pii/S0005109801000516.

Cutler, Mark. 2012. Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter. M.s.
thesis, MIT.

Ding, Jerry, Eugene Li, Haomiao Huang, and Claire J Tomlin. 2011. “Reachability-based Synthesis of
Feedback Policies for Motion Planning Under Bounded Disturbances.” In IEEE International Conference
on Robotics and Automation. Shanghai, China, 2160–2165.

Domahidi, Alexander, Aldo U Zgraggen, Melanie N Zeilinger, Manfred Morari, and Colin N Jones. 2012.
“Efficient Interior Point Methods for Multistage Problems Arising in Receding Horizon Control.” In
IEEE Conference on Decision and Control. (to appear).

Ferreau, H.J., HG Bock, and M Diehl. 2008. “An online active set strategy to overcome the limitations
of explicit MPC.” International Journal of Robust and Nonlinear Control 18 (8):816–830. URL
http://onlinelibrary.wiley.com/doi/10.1002/rnc.1251/abstract.

Gilbert, E.G. and K.T. Tan. 1991. “Linear systems with state and control constraints: the theory and
application of maximal output admissible sets.” IEEE Transactions on Automatic Control 36 (9):1008–
1020. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=83532.

Gill, Philip E., Sven J. Hammarling, Walter Murray, Michael A. Saunders, and Margaret H. Wright. 1986.
“User’s Guide for LSSOL (Version 1.0).”

62

References

Gill, Philip E., Walter Murray, and Michael a. Saunders. 2002. “SNOPT: An SQP Algorithm for
Large-Scale Constrained Optimization.” SIAM Journal on Optimization 12 (4):979–1006. URL
http://epubs.siam.org/doi/abs/10.1137/S1052623499350013.

Gillula, Jeremy H and Claire J Tomlin. 2011. “Guaranteed Safe Online Learning of a Bounded System.”
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys. (IROS). San Francisco, CA.

Grimm, G. 2004. “Examples when nonlinear model predictive control is nonrobust*1.” Automatica
40 (10):1729–1738. URL http://linkinghub.elsevier.com/retrieve/pii/S0005109804001402.

Guenard, Nicolas, Tarek Hamel, and Laurent Eck. 2006. “Control laws for the tele operation of an
unmanned aerial vehicle known as an x4-flyer.” In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on. IEEE, 3249–3254. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4058899.

Hehn, Markus and Raffaello D Andrea. 2012. “Real-Time Trajectory Generation for Interception Ma-
neuvers with Quadrocopters.” In IEEE/RSJ International Conference on Intelligent Robots and Systems.
URL http://www.idsc.ethz.ch/people/staff/hehn-m/hehn_dandrea_interception.pdf.

Hoffmann, G., D.G. Rajnarayan, S.L. Waslander, D. Dostal, J.S. Jang, and C.J. Tomlin. 2004. “The
Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC).” In The 23rd
Digital Avionics Systems Conference. Salt Lake City, UT, USA: Ieee, 12.E.4–121–10. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1390847.

Hoffmann, Gabriel and Claire Tomlin. 2008. “Mobile Sensor Network Control using Mutual In-
formation Methods and Particle Filters.” IEEE Transactions on Automatic Control URL http:
//hoffmann.stanford.edu/papers/infoControl.pdf.

Hoffmann, Gabriel M., Haomiao Huang, Steven L. Waslander, and Claire J. Tomlin. 2011. “Preci-
sion flight control for a multi-vehicle quadrotor helicopter testbed.” Control Engineering Practice
19 (9):1023–1036. URL http://linkinghub.elsevier.com/retrieve/pii/S0967066111000712.

Hoffmann, G.M., Haomiao Huang, S.L. Waslander, and C.J. Tomlin. 2007. “Quadrotor helicopter flight
dynamics and control: Theory and experiment.” In Proc. AIAA Guidance, Navigation, and Control
Conference. Hilton Head, SC: Citeseer, 2007–6461. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.90.4126&rep=rep1&type=pdf.

Hoffmann, G.M., S.L. Waslander, and C.J. Tomlin. 2006. “Distributed cooperative search using
information-theoretic costs for particle filters, with quadrotor applications.” In Proc. AIAA
Guidance, Navigation, and Control Conf. and Exhibit. Keystone, Colorado: Citeseer. URL
http://hybrid.eecs.berkeley.edu/pubs/Hoffmann_AIAA_GNC06.pdfhttp://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.137.5661&rep=rep1&type=pdf.

———. 2009. “Aerodynamics and control of autonomous quadrotor helicopters in aggressive ma-
neuvering.” 2009 IEEE International Conference on Robotics and Automation :3277–3282URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5152561.

How, Jonathan P., Brett Bethke, Adrian Frank, Daniel Dale, and John Vian. 2008. “Real-time indoor
autonomous vehicle test environment.” IEEE Control Systems Magazine 28 (2):51–64. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4472379.

Huang, A.S., Abraham Bachrach, Peter Henry, Michael Krainin, D. Maturana, Dieter Fox, and Nick Roy.
2011a. “Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera.” In 15th
Intl. Symp. on Robotics Research. Flagstaff, AZ, USA. URL http://www.isrr-2011.org/ISRR-2011/
Program_files/Papers/Huang-ISRR-2011.pdf.

Huang, Haomiao, Jerry Ding, Wei Zhang, and C.J. Tomlin. 2011b. “A differential game approach to
planning in adversarial scenarios: A case study on capture-the-flag.” In Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 1451–1456. URL http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=5980264.

63

References

Kolmanovsky, I. and E.G. Gilbert. 1998. “Theory and computation of disturbance invariant sets for
discrete-time linear systems.” Mathematical Problems in Engineering 4 (4):317–363. URL http:
//www.emis.ams.org/journals/HOA/MPE/Volume4_4/367.pdf.

Kvasnica, M, P Grieder, and M Baotic. 2004. “Multi-Parametric Toolbox (MPT).” URL http://control.
ee.ethz.ch/~mpt/.

———. 2006. [Users’ Guide for] Multi-Parametric Toolbox (MPT). URL http://control.ee.ethz.ch/
~mpt/downloads/MPTmanual.pdf.

Langson, W, I. Chryssochoos, S.V. Raković, and D. Q. Mayne. 2004. “Robust model predictive control
using tubes.” Automatica 40 (1):125–133. URL http://linkinghub.elsevier.com/retrieve/pii/
S0005109803002838.

Leishman, J. G. 2006. Principles of helicopter aerodynamics. Cambridge University Press.

Limon, D., I. Alvarado, T. Alamo, and E.F. Camacho. 2008. “MPC for tracking piecewise constant
references for constrained linear systems.” Automatica 44 (9):2382–2387. URL http://linkinghub.
elsevier.com/retrieve/pii/S0005109808001106.

———. 2010. “Robust tube-based MPC for tracking of constrained linear systems with additive
disturbances.” Journal of Process Control 20 (3):248–260. URL http://linkinghub.elsevier.com/
retrieve/pii/S0959152409002169.

Ljung, L. 1979. “Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear
systems.” IEEE Trans. on Autom. Control 24 (1):36–50. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1101943.

Lopes, Renato Vilela, Geovany Ara, and Yoshiyuki Ishihara. 2011. “Model Predictive Control applied to
tracking and attitude stabilization of a VTOL quadrotor aircraft.” In 21st International Congress of
Mechanical Engineering, 2008. Natal, RN, Brazil.

Lupashin, Sergei, Angela Schollig, Markus Hehn, and Raffaello D’Andrea. 2011. “The Flying Machine
Arena as of 2010.” In 2011 IEEE International Conference on Robotics and Automation. IEEE, 2970–
2971. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980308.

Maeder, Urban, Francesco Borrelli, and Manfred Morari. 2009. “Linear offset-free Model Predictive
Control.” Automatica 45 (10):2214–2222. URL http://linkinghub.elsevier.com/retrieve/pii/
S0005109809002969.

Mariethoz, S., A. Domahidi, and M. Morari. 2009. “Sensorless explicit model predictive control of
permanent magnet synchronous motors.” In Electric Machines and Drives Conference, 2009. IEMDC’09.
IEEE International. 1250–1257.

Mattingley, Jacob and Stephen Boyd. 2012. “CVXGEN: a code generator for embedded convex optimiza-
tion.” Optimization and Engineering 13 (1):1–27. URL http://www.springerlink.com/index/10.
1007/s11081-011-9176-9.

Mehrotra, Sanjay. 1992. “On the implementation of a primal-dual interior point method.” SIAM Journal
on optimization 2 (4):575–601. URL http://epubs.siam.org/doi/abs/10.1137/0802028.

Meier, Lorenz, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys.
2012. “PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer
vision.” Autonomous Robots 33 (1-2):21–39. URL http://www.springerlink.com/index/10.1007/
s10514-012-9281-4.

Michael, N., Daniel Mellinger, Quentin Lindsey, and V. Kumar. 2010. “The GRASP multiple micro-UAV
testbed.” Robotics & Automation Magazine, IEEE 17 (3):56–65. URL http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5569026.

Michael, Nathan, Shaojie Shen, Kartik Mohta, Yash Mulgaonkar, Vijay Kumar, Keiji Nagatani, Yoshito
Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, Kazunori Ohno, Eijiro Takeuchi, and Satoshi
Tadokoro. 2012. “Collaborative mapping of an earthquake-damaged building via ground and aerial
robots.” Journal of Field Robotics 29 (5):832–841. URL http://doi.wiley.com/10.1002/rob.21436.

64

References

Muller, Mark, Sergei Lupashin, and Raffaello D’Andrea. 2011. “Quadrocopter ball juggling.” In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 5113–
5120. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6048148http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6048148.

Raffo, GV and MG Ortega. 2008. “MPC with Nonlinear H-infinity Control for Path Tracking of a
Quad-Rotor Helicopter.” In Proceedings of the 17th World Congress. 8564–8569. URL http://www.nt.
ntnu.no/users/skoge/prost/proceedings/ifac2008/data/papers/2578.pdf.

Rakovic, Sasa V and Miroslav Baric. 2010. “Parameterized Robust Control Invariant Sets for Linear
Systems: Theoretical Advances and Computational Remarks.” IEEE Transactions on Automatic Control
55 (7):1599–1614. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5406128.

Rao, CV, SJ Wright, and JB Rawlings. 1998. “Application of interior-point methods to model pre-
dictive control.” Journal of optimization theory and Applications 99 (3):723–757. URL http:
//www.springerlink.com/index/k5u61174vh53k777.pdf.

Richalet, J, A Rault, J L Testud, and J Papon. 1976. “Algorithmic control of industrial processes.”
In Proceedings of the 4th IFAC symposium on identification and system parameter estimation. URSS
September, Tbilisi„ 1119–1167.

Richalet, J., A Rault, J.L. Testud, and J. Papon. 1978. “Model predictive heuristic control.” Automatica
14 (5):413–428. URL http://linkinghub.elsevier.com/retrieve/pii/0005109878900018.

Sastry, S. Shankar and Marc Bodson. 1994. Adaptive Control: Stability, Convergence, and Robustness.
Prentice-Hall.

Schwager, Mac, Brian J. Julian, Michael Angermann, and Daniela Rus. 2011. “Eyes in the Sky:
Decentralized Control for the Deployment of Robotic Camera Networks.” Proc. IEEE 99 (9):1541
– 1561. URL http://people.csail.mit.edu/schwager/MyPapers/SchwagerProcIEEE11Cameras.
pdf.

Tedrake, R., I. R. Manchester, M. Tobenkin, and J. W. Roberts. 2010. “LQR-trees: Feedback Motion
Planning via Sums-of-Squares Verification.” Intl. J. of Robotics Res. 29 (8):1038–1052. URL http:
//ijr.sagepub.com/cgi/doi/10.1177/0278364910369189.

Tondel, P., T.A. Johansen, and A. Bemporad. 2001. “An algorithm for multi-parametric quadratic
programming and explicit MPC solutions.” In Decision and Control, 2001. Proceedings of the 40th IEEE
Conference on. 1199–1204.

Vitus, Michael. 2012. Stochastic Control Via Chance Constrained Optimization and its Application to
Unmanned Aerial Vehicles. Ph.d. thesis, Stanford.

Vitus, M.P., Vijay Pradeep, G. Hoffmann, S.L. Waslander, and C.J. Tomlin. 2008. “Tunnel-milp: Path
planning with sequential convex polytopes.” In AIAA Guidance, Navigation, and Control Conference.
Honolulu, Hawaii, USA. URL http://hoffmann.stanford.edu/papers/GNC08_TunnelMILP.pdf.

Wang, Y. and S. Boyd. 2010. “Fast model predictive control using online optimization.” Control Systems
Technology, IEEE Transactions on 18 (2):267–278. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5153127.

Waslander, SL, GM Hoffmann, J.S. Jang, and C.J. Tomlin. 2005. “Multi-agent quadrotor testbed control
design: Integral sliding mode vs. reinforcement learning.” In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Sys. IEEE, 3712–3717. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1545025.

Yingshi, Wang, Sun Lei, Liu Jingtai, Yang Qi, Zhou Lu, and He Shan. 2010. “A novel trajectory
prediction approach for table-tennis robot based on nonlinear output feedback observer.” In Robotics
and Biomimetics (ROBIO), 2010 IEEE International Conference on. IEEE, 1136–1141. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5723488.

65

References

Zeilinger, Melanie N. 2011. Real-time Model Predictive Control. Ph.d. thesis, ETH Zurich. URL
http://e-collection.library.ethz.ch/eserv/eth:3071/eth-3071-02.pdf.

Zeilinger, Melanie Nicole, Colin Neil Jones, and Manfred Morari. 2011. “Real-Time
Suboptimal Model Predictive Control Using a Combination of Explicit MPC and On-
line Optimization.” IEEE Transactions on Automatic Control 56 (7):1524–1534. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5701768http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5701768.

Zhang, Xiaojing, Anil Aswani, Patrick Bouffard, and Claire Tomlin. 2013. “Experiments Using Sparse
Interior Point Solver for Learning-Based MPC with Linear Models.” In submitted to European Control
Conference.

66

List of Symbols

3DMAG three-dimensional magnetometer

CFTOC constrained finite-time optimal control

EKF extended Kalman filter

HL high-level (processor on AscTec AutoPilot board)

ISS input-to-state stability

LBMPC learning-based model predictive control

LL low-level (processor on AscTec AutoPilot board)

LP linear program

LTI linear, time-invariant

mp-QP multi-parametric quadratic program

MPC model predictive control

MPT Multi-Parametric Toolbox

PD Proportional-Derivative

PD IIPM primal-dual infeasible start interior point method

PID proportional-integral-derivative

PWA piecewise-affine

PWA piecewise-affine

QCQP quadratically-constrained quadratic program

QP quadratic program

SDK software development kit

SISO single-input single-output

67

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Organization
	1.3 Notation
	1.3.1 General conventions
	1.3.2 List of symbols

	2 Quadrotor Dynamics Model
	2.1 Overview
	2.2 Quadrotor theory of operation
	2.3 Quadrotor models for near-hover operation
	2.3.1 Preliminaries
	2.3.2 Attitude Dynamics
	2.3.3 Lateral translational dynamics
	2.3.4 Combined attitude and lateral translational dynamics
	2.3.5 Vertical translational dynamics
	2.3.6 Combined lateral and vertical dynamics model

	2.4 System Identification
	2.4.1 Attitude dynamics
	2.4.2 Vertical dynamics
	2.4.3 Combined lateral and vertical dynamics

	3 Explicit MPC Control
	3.1 Overview
	3.2 Problem formulation
	3.2.1 Standard QP-MPC
	3.2.2 Offset-free QP-MPC using u formulation

	3.3 Experiments
	3.3.1 Dual, decoupled standard explicit CFTOC MPC
	3.3.2 Coupled standard explicit CFTOC MPC
	3.3.3 Offset-free MPC

	3.4 Discussion

	4 Learning-Based MPC Control
	4.1 Overview
	4.2 Theory
	4.2.1 Quadrotor Vehicle Model
	4.2.2 Overview of learning-based model predictive control theory
	4.2.3 Extensions of LBMPC for quadrotors

	4.3 Control System Design
	4.3.1 Vehicle State Estimation and Learning
	4.3.2 LBMPC parameters

	4.4 Implementation
	4.5 Experimental Results
	4.5.1 Learning the ground effect
	4.5.2 Decreased overshoot in step response
	4.5.3 Robustness to ``incorrect learning''
	4.5.4 Precise maneuvering: ball catching

	4.6 Conclusions

	5 Exploiting Structure for Fast LBMPC Solutions
	5.1 Introduction
	5.2 Experimental and simulation results
	5.2.1 Computational scaling in horizon length
	5.2.2 Experimental comparison

	5.3 Conclusions

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	A Experimental testbed description
	A.1 Overview
	A.2 Pelican quadrotor
	A.2.1 Control System

	A.3 Motion capture system
	A.4 Safety systems

	B Modeling and estimation for a ball in free flight
	B.1 Modeling
	B.2 Estimation and prediction
	B.2.1 State estimation
	B.2.2 Prediction

	References
	List of Symbols

